Summary
Anatomical information at the cellular level is important in many fields, including organ systems development, computational biology and informatics. Creating data sets at resolutions that provide enough detail to reconstruct cellular structures across tissue volumes from 1 to 100 mm3 has proven to be difficult and time‐consuming. In this paper, we describe a new method for staining and imaging large volumes of tissue at sub‐micron resolutions. Serial sections are cut using an automated ultra‐microtome, whereas concurrently each section is imaged through a light microscope with a high‐speed line‐scan camera. This technique, knife‐edge scanning microscopy, allows us to view and record large volumes of tissue in a relatively small amount of time (approximately 7 mm2 s−1).
The resolution and scanning speed of knife‐edge scanning microscopy provides a new method for imaging tissue at sufficient resolution to reconstruct maps of cellular distribution and morphology. We show that these techniques preserve the alignment of serial sections accurately enough to allow for reconstruction of neuronal processes and microvasculature. Expanding these techniques to other tissues opens up the possibility of creating fully reconstructed cellular maps of entire organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.