The progressive nature of Parkinson’s disease, its complex treatment regimens and the high rates of comorbid conditions make self-management and treatment adherence a challenge. Clinicians have limited face-to-face consultation time with Parkinson’s disease patients, making it difficult to comprehensively address non-adherence. Here we share the results from a multi-centre (seven centres) randomised controlled trial conducted in England and Scotland to assess the impact of using a smartphone-based Parkinson’s tracker app to promote patient self-management, enhance treatment adherence and quality of clinical consultation. Eligible Parkinson’s disease patients were randomised using a 1:1 ratio according to a computer-generated random sequence, stratified by centre and using blocks of variable size, to intervention Parkinson’s Tracker App or control (Treatment as Usual). Primary outcome was the self-reported score of adherence to treatment (Morisky medication adherence scale −8) at 16 weeks. Secondary outcomes were Quality of Life (Parkinson’s disease questionnaire −39), quality of consultation for Parkinson’s disease patients (Patient-centred questionnaire for Parkinson’s disease), impact on non-motor symptoms (Non-motor symptoms questionnaire), depression and anxiety (Hospital anxiety and depression scale) and beliefs about medication (Beliefs about Medication Questionnaire) at 16 weeks. Primary and secondary endpoints were analysed using a generalised linear model with treatment as the fixed effect and baseline measurement as the covariate. 158 patients completed the study (Parkinson’s tracker app = 68 and TAU = 90). At 16 weeks Parkinson’s tracker app significantly improved adherence, compared to treatment as usual (mean difference: 0.39, 95%CI 0.04–0.74; p = 0.0304) with no confounding effects of gender, number of comorbidities and age. Among secondary outcomes, Parkinson’s tracker app significantly improved patients’ perception of quality of consultation (0.15, 95% CI 0.03 to 0.27; p = 0.0110). The change in non-motor symptoms was −0.82 (95% CI −1.75 to 0.10; p = 0.0822). 72% of participants in the Parkinson’s tracker app group continued to use and engage with the application throughout the 16-week trial period. The Parkinson’s tracker app can be an effective and novel way of enhancing self-reported medication adherence and quality of clinical consultation by supporting self-management in Parkinson’s disease in patients owning smartphones. Further work is recommended to determine whether the benefits of the intervention are maintained beyond the 16 week study period.
BackgroundThe increasing ownership of smartphones provides major opportunities for epidemiological research through self-reported and passively collected data.ObjectiveThis pilot study aimed to codesign a smartphone app to assess associations between weather and joint pain in patients with rheumatoid arthritis (RA) and to study the success of daily self-reported data entry over a 60-day period and the enablers of and barriers to data collection.MethodsA patient and public involvement group (n=5) and 2 focus groups of patients with RA (n=9) supported the codesign of the app collecting self-reported symptoms. A separate “capture app” was designed to collect global positioning system (GPS) and continuous raw accelerometer data, with the GPS-linking providing local weather data. A total of 20 patients with RA were then recruited to collect daily data for 60 days, with entry and exit interviews. Of these, 17 were loaned an Android smartphone, whereas 3 used their own Android smartphones.ResultsOf the 20 patients, 6 (30%) withdrew from the study: 4 because of technical challenges and 2 for health reasons. The mean completion of daily entries was 68% over 2 months. Patients entered data at least five times per week 65% of the time. Reasons for successful engagement included a simple graphical user interface, automated reminders, visualization of data, and eagerness to contribute to this easily understood research question. The main barrier to continuing engagement was impaired battery life due to the accelerometer data capture app. For some, successful engagement required ongoing support in using the smartphones.ConclusionsThis successful pilot study has demonstrated that daily data collection using smartphones for health research is feasible and achievable with high levels of ongoing engagement over 2 months. This result opens important opportunities for large-scale longitudinal epidemiological research.
BackgroundThe huge increase in smartphone use heralds an enormous opportunity for epidemiology research, but there is limited evidence regarding long-term engagement and attrition in mobile health (mHealth) studies.ObjectiveThe objective of this study was to examine how representative the Cloudy with a Chance of Pain study population is of wider chronic-pain populations and to explore patterns of engagement among participants during the first 6 months of the study.MethodsParticipants in the United Kingdom who had chronic pain (≥3 months) and enrolled between January 20, 2016 and January 29, 2016 were eligible if they were aged ≥17 years and used the study app to report any of 10 pain-related symptoms during the study period. Participant characteristics were compared with data from the Health Survey for England (HSE) 2011. Distinct clusters of engagement over time were determined using first-order hidden Markov models, and participant characteristics were compared between the clusters.ResultsCompared with the data from the HSE, our sample comprised a higher proportion of women (80.51%, 5129/6370 vs 55.61%, 4782/8599) and fewer persons at the extremes of age (16-34 and 75+). Four clusters of engagement were identified: high (13.60%, 865/6370), moderate (21.76%, 1384/6370), low (39.35%, 2503/6370), and tourists (25.44%, 1618/6370), between which median days of data entry ranged from 1 (interquartile range; IQR: 1-1; tourist) to 149 (124-163; high). Those in the high-engagement cluster were typically older, whereas those in the tourist cluster were mostly male. Few other differences distinguished the clusters.ConclusionsCloudy with a Chance of Pain demonstrates a rapid and successful recruitment of a large, representative, and engaged sample of people with chronic pain and provides strong evidence to suggest that smartphones could provide a viable alternative to traditional data collection methods.
Patients with chronic pain commonly believe their pain is related to the weather. Scientific evidence to support their beliefs is inconclusive, in part due to difficulties in getting a large dataset of patients frequently recording their pain symptoms during a variety of weather conditions. Smartphones allow the opportunity to collect data to overcome these difficulties. Our study Cloudy with a Chance of Pain analysed daily data from 2658 patients collected over a 15-month period. The analysis demonstrated significant yet modest relationships between pain and relative humidity, pressure and wind speed, with correlations remaining even when accounting for mood and physical activity. This research highlights how citizen-science experiments can collect large datasets on real-world populations to address long-standing health questions. These results will act as a starting point for a future system for patients to better manage their health through pain forecasts.
Background The BRadykinesia Akinesia INcoordination (BRAIN) tap test is an online keyboard tapping task that has been previously validated to assess upper limb motor function in Parkinson's disease (PD). Objectives To develop a new parameter that detects a sequence effect and to reliably distinguish between PD patients on and off medication. In addition, we sought to validate a mobile version of the test for use on smartphones and tablet devices. Methods The BRAIN test scores in 61 patients with PD and 93 healthy controls were compared. A range of established parameters captured number and accuracy of alternate taps. The new velocity score recorded the intertap speed. Decrement in the velocity score was used as a marker for the sequence effect. In the validation phase, 19 PD patients and 19 controls were tested using different hardware including mobile devices. Results Quantified slopes from the velocity score demonstrated bradykinesia (sequence effect) in PD patients (slope cut‐off −0.002) with 58% sensitivity and 81% specificity (discovery phase of the study) and 65% sensitivity and 88% specificity (validation phase). All BRAIN test parameters differentiated between on and off medication states in PD. Differentiation between PD patients and controls was possible on all hardware versions of the test. Conclusion The BRAIN tap test is a simple, user‐friendly, and free‐to‐use tool for the assessment of upper limb motor dysfunction in PD, which now includes a measure of bradykinesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.