Weak electric fields modulate neuronal activity, and knowledge of the interaction threshold is important in the understanding of neuronal synchronization, in neural prosthetic design, and in the public health assessment of environmental extremely low frequency fields. Previous experimental measurements have placed the threshold between 1 and 5 mV/mm, although theory predicts that elongated neurons should have submillivolt per millimeter sensitivity near 100 microV/mm. We here provide the first experimental confirmation that neuronal networks are detectably sensitive to submillivolt per millimeter electrical fields [Gaussian pulses 26 msec full width at half-maximal, 140 microV/mm root mean square (rms), 295 microV/mm peak amplitude], an order of magnitude below previous findings, and further demonstrate that these networks are more sensitive than the average single neuron threshold (185 microV/mm rms, 394 microV/mm peak amplitude) to field modulation.
Stochastic resonance, a nonlinear phenomenon in which random noise optimizes a system's response to a signal, has been postulated to provide a role for noise in information processing in the brain. In these experiments, a time varying electric field was used to deliver both signal and noise directly to a network of neurons from mammalian brain. As the magnitude of the stochastic component of the field was increased, resonance was observed in the response of the neuronal network to a weak periodic signal. This is the first demonstration of stochastic resonance in neuronal networks from the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.