Advances in modern sequencing technologies allow us to generate sufficient data to analyze hundreds of bacterial genomes from a single machine in a single day. This potential for sequencing massive numbers of genomes calls for fully automated methods to produce high-quality assemblies and variant calls. We introduce Pilon, a fully automated, all-in-one tool for correcting draft assemblies and calling sequence variants of multiple sizes, including very large insertions and deletions. Pilon works with many types of sequence data, but is particularly strong when supplied with paired end data from two Illumina libraries with small e.g., 180 bp and large e.g., 3–5 Kb inserts. Pilon significantly improves draft genome assemblies by correcting bases, fixing mis-assemblies and filling gaps. For both haploid and diploid genomes, Pilon produces more contiguous genomes with fewer errors, enabling identification of more biologically relevant genes. Furthermore, Pilon identifies small variants with high accuracy as compared to state-of-the-art tools and is unique in its ability to accurately identify large sequence variants including duplications and resolve large insertions. Pilon is being used to improve the assemblies of thousands of new genomes and to identify variants from thousands of clinically relevant bacterial strains. Pilon is freely available as open source software.
Massively parallel DNA sequencing technologies are revolutionizing genomics by making it possible to generate billions of relatively short (∼100-base) sequence reads at very low cost. Whereas such data can be readily used for a wide range of biomedical applications, it has proven difficult to use them to generate high-quality de novo genome assemblies of large, repeat-rich vertebrate genomes. To date, the genome assemblies generated from such data have fallen far short of those obtained with the older (but much more expensive) capillary-based sequencing approach. Here, we report the development of an algorithm for genome assembly, ALLPATHS-LG, and its application to massively parallel DNA sequence data from the human and mouse genomes, generated on the Illumina platform. The resulting draft genome assemblies have good accuracy, short-range contiguity, long-range connectivity, and coverage of the genome. In particular, the base accuracy is high (≥99.95%) and the scaffold sizes (N50 size = 11.5 Mb for human and 7.2 Mb for mouse) approach those obtained with capillary-based sequencing. The combination of improved sequencing technology and improved computational methods should now make it possible to increase dramatically the de novo sequencing of large genomes. The ALLPATHS-LG program is available at http://www.broadinstitute.org/science/programs/ genome-biology/crd. T he high-quality assembly of a genome sequence is a critical foundation for understanding the biology of an organism, the genetic variation within a species, or the pathology of a tumor. High-quality assembly is particularly challenging for large, repeatrich genomes such as those of mammals. Among mammals, "finished" genome sequences have been completed for the human and the mouse (1, 2). However, for most large genomes, efforts have focused on using shotgun-sequencing data to produce highquality draft genome assemblies-with long-range contiguity in the range of 20-100 kb and long-range connectivity in the range of 10 Mb (e.g., refs. 3-5). Using traditional capillary-based sequencing, such assemblies have been produced for multiple mammals at a cost of tens of million dollars each.Recently, there has been a revolution in DNA sequencing technology. New massively parallel technologies can produce DNA sequence information at a per-base cost that is ∼100,000-fold lower than a decade ago (6, 7). In principle, this should make it possible to dramatically decrease the cost of generating highquality draft genome assemblies. In practice, however, this has been difficult because the new technology produces sequencing "reads" of only ∼100 bases in length (compared with >700 bases for capillary-based technology). These shorter reads are also less accurate. For both of these reasons, these data are more difficult to assemble into long contiguous and connected sequence. Excellent de novo assemblies using massively parallel sequence data have been reported for microbes with genomes up to 40 Mb (refs. 8-10 and many others). There have been some important pioneering e...
BackgroundThe continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents.Methods and FindingsWe performed whole genome sequencing and drug susceptibility testing on 337 clinical isolates of Mycobacterium tuberculosis collected in KwaZulu-Natal from 2008 to 2013, in addition to three historical isolates, collected from patients in the same province and including an isolate from the 2005 Tugela Ferry XDR outbreak, a multidrug-resistant (MDR) isolate from 1994, and a pansusceptible isolate from 1995. We utilized an array of whole genome comparative techniques to assess the relatedness among strains, to establish the order of acquisition of drug resistance mutations, including the timing of acquisitions leading to XDR-TB in the LAM4 spoligotype, and to calculate the number of independent evolutionary emergences of MDR and XDR. Our sequencing and analysis revealed a 50-member clone of XDR M. tuberculosis that was highly related to the Tugela Ferry XDR outbreak strain. We estimated that mutations conferring isoniazid and streptomycin resistance in this clone were acquired 50 y prior to the Tugela Ferry outbreak (katG S315T [isoniazid]; gidB 130 bp deletion [streptomycin]; 1957 [95% highest posterior density (HPD): 1937–1971]), with the subsequent emergence of MDR and XDR occurring 20 y (rpoB L452P [rifampicin]; pncA 1 bp insertion [pyrazinamide]; 1984 [95% HPD: 1974–1992]) and 10 y (rpoB D435G [rifampicin]; rrs 1400 [kanamycin]; gyrA A90V [ofloxacin]; 1995 [95% HPD: 1988–1999]) prior to the outbreak, respectively. We observed frequent de novo evolution of MDR and XDR, with 56 and nine independent evolutionary events, respectively. Isoniazid resistance evolved before rifampicin resistance 46 times, whereas rifampicin resistance evolved prior to isoniazid only twice. We identified additional putative compensatory mutations to rifampicin in this dataset. One major limitation of this study is that the conclusions with respect to ordering and timing of acquisition of mutations may not represent universal patterns of drug resistance emergence in other areas of the globe.ConclusionsIn the first whole genome-based analysis of the emergence of drug resistance among clinical isolates of M. tuberculosis, we show that the ancestral precursor of the LAM4 XDR outbreak strain in Tugela Ferry gained mutations to first-line drugs at the beginning of the antibiotic e...
International audienceThe degree to which molecular epidemiology reveals informationabout the sources and transmission patterns of an outbreakdepends on the resolution of the technology used and the samplesstudied. Isolates of Escherichia coli O104:H4 from the outbreak centeredin Germany in May–July 2011, and the much smaller outbreakin southwest France in June 2011, were indistinguishable by standardtests. We report a molecular epidemiological analysis usingmultiplatform whole-genome sequencing and analysis of multipleisolates from the German and French outbreaks. Isolates from theGerman outbreak showed remarkably little diversity, with onlytwo single nucleotide polymorphisms (SNPs) found in isolates fromfour individuals. Surprisingly, we found much greater diversity (19SNPs) in isolates from seven individuals infected in the French outbreak.The German isolates form a clade within the more diverseFrench outbreak strains. Moreover, five isolates derived from a singleinfected individual from the French outbreak had extremelylimited diversity. The striking difference in diversity between theGerman and French outbreak samples is consistent with severalhypotheses, including a bottleneck that purged diversity in theGerman isolates, variation in mutation rates in the two E. coli outbreakpopulations, or uneven distribution of diversity in the seedpopulations that led to each outbreak
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.