Objective: To test the feasibility of a browser extension to estimate the exposure of adolescents to (un)healthy food and beverage advertisements on Facebook and the persuasive techniques used to market these foods and beverages. Design: A Chrome browser extension (AdHealth) was developed to automatically collect advertisements seen by participants on their personal Facebook accounts. Information was extracted and sent to a web server by parsing the Document Object Model tree representation of Facebook web pages. Key information retrieved included the advertisement type seen and duration of each ad sighting. The WHO-Europe Nutrient Profile Model was used to classify the healthiness of products advertised as permitted (healthy) or not permitted (unhealthy) to be advertised to children. Setting: Auckland, New Zealand. Participants: Thirty-four Facebook users aged 16–18 years. Results: The browser extension retrieved 4973 advertisements from thirty-four participants, of which 204 (4 %) were food-related, accounting for 1·1 % of the exposure duration. Of those food advertisements, 98 % were classified as not permitted, and 33·7 and 31·9 %, respectively, of those featured promotional characters or premium offers. The mean rate of exposure to not permitted food was 4·8 (sd = 2·5) advertisements per hour spent on Facebook. Conclusions: Using a Chrome extension to monitor exposure to unhealthy food and beverage advertisements showed that the vast majority of advertisements were for unhealthy products, despite numerous challenges to implementation. Further efforts are needed to develop tools for use across other social media platforms and mobile devices, and policies to protect young people from digital food advertising.
ObjectiveTo compare the costs and climate impact (greenhouse gas emissions) associated with current and healthy diets and two healthy and environmentally friendly dietary patterns: flexitarian and vegan.DesignModelling studySettingAotearoa (New Zealand).Main outcome measuresThe distribution of the cost and climate impact (kgCO2e/kg of food per fortnight) of 2 weekly current, healthy, vegan and flexitarian household diets was modelled using a list of commonly consumed foods, a set of quantity/serves constraints for each, and constraints for food group and nutrient intakes based on dietary guidelines (Eating and Activity Guidelines for healthy diets and EAT-Lancet reference diet for vegan and flexitarian diets) or nutrition survey data (current diets).ResultsThe iterative creation of 210–237 household dietary intakes for each dietary scenario was achieved using computer software adapted for the purpose (DIETCOST). There were stepwise differences between diet scenarios (p<0.001) with the current diet having the lowest mean cost in New Zealand Dollars (NZ$584 (95% CI NZ$580 to NZ$588)) per fortnight for a family of four) but highest mean climate impact (597 kgCO2e (95% CI 590 to 604 kgCO2e)), followed by the healthy diet (NZ$637 (95% CI NZ$632 to NZ$642), 452 kgCO2e (95% CI 446 to 458 kgCO2e)), the flexitarian diet (NZ$728 (95% CI NZ$723 to NZ$734), 263 kgCO2e (95% CI 261 to 265 kgCO2e)) and the vegan diet, which had the highest mean cost and lowest mean climate impact (NZ$789, (95% CI NZ$784 to NZ$794), 203 kgCO2e (95% CI 201 to 204 kgCO2e)). There was a negative relationship between cost and climate impact across diets and a positive relationship within diets.ConclusionsMoving from current diets towards sustainable healthy diets (SHDs) will reduce climate impact but generally at a higher cost to households. The results reflect trade-offs, with the larger constraints placed on diets, the greater cost and factors such as nutritional adequacy, variety, cost and low-emissions foods being considered. Further monitoring and policies are needed to support population transitions that are country specific from current diets to SHD.
This paper outlines the results of mixed-methods research on M aori and cycling. Our findings suggest that M aori cycle at similar rates to P akeh a (NZ European); however conditions may differ, possibly indicating higher levels of "necessity cycling" amongst M aori. M aori experience similar barriers to cycling, including a lack of suitable cycling infrastructure, but these occur against a backdrop of stark social, economic and transport-related inequities. Particular barriers for M aori may include inflexible work conditions, concerns about neighbourhood safety, inadequate provision for social cycling, and lack of access to places of importance to M aori. We identify potential solutions, including more wh anau-friendly and culturally safe cycling infrastructure, and cycling programmes designed around M aori commitments to whanaungatanga and kaitiakitanga.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.