We report two serotonin (5-hydroxytryptamine, 5-HT) receptors, MR22 and REC17, that belong to the G-protein-associated receptor superfamily. MR22 and REC17 are 371 and 357 amino acids long, respectively, as deduced from nucleotide sequence and share 68% mutual amino acid identity and 30-35% identity with known catecholamine and 5-HT receptors. Saturable binding of 125I-labeled (+)-lysergic acid diethylamide to transiently expressed MR22 in COS-M6 cells was inhibited by ergotamine > methiothepin > 5-carboxamidotryptamine > 5-HT. For REC17, the rank of potency was ergotamine > 5-carboxamidotryptamine > methiothepin > methysergide > 5-HT. Both were insensitive to 5-HT1A, 5-HTTD or 5-HT2 serotonergic ligands [8-hydroxy-2-(di-n-propylamino)tetralin, sumatriptan, and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane]. The mRNAs encoding MR22 were detected in the CAl region ofhippocampus, the medial habenula, and raphe nuclei. In contrast, mRNAs encoding REC17 were found throughout the rat central nervous system. We propose that REC17 and MR22, designated as 5-HT5. and 5-HTsp, represent a distinct subfamily of 5-HT receptors.Serotonin (5-hydroxytryptamine, 5-HT) regulates a wide variety of sensory, motor, and behavioral functions in the mammalian central nervous system. This biogenic amine neurotransmitter is synthesized by neurons in the raphe nuclei of the brainstem that project throughout the central nervous system, with the highest density in basal ganglia and limbic structures (1). Serotonergic transmission is thought to be involved with a variety of behaviors and psychiatric disorders including anxiety, sleep regulation, aggression, feeding, and depression (2, 3). Understanding how 5-HT mediates its diverse physiological actions requires the identification and isolation of the pertinent 5-HT receptors.
A series of 5-aryl-2,4-dihydro-3H-1,2,4-triazol-3-ones was evaluated for anticonvulsant activity. In general the members of this series were prepared by the alkaline cyclization of 1-aroyl-4-alkylsemicarbazides. The resulting 2-unsubstituted 3H-1,2,4-triazol-3-ones were then alkylated, yielding 2,4-dialkyl-3H-1,2,4-triazol-3-ones. Approximately one-third of the compounds examined exhibited activity against both maximal electroshock- and pentylenetetrazole-induced seizures in mice. Receptor-binding studies suggest that this activity was not a consequence of activity at either benzodiazepine or NMDA-type glutamate receptors. From this series, compound 45 was selected for further evaluation where it was also found to be active against 3-mercaptopropionic acid, bicuculline, and quinolinic acid induced seizures in mice. In addition, 45 also protected gerbils from hippocampal neuronal degeneration produced by either hypoxia or intrastriatal quinolinic acid injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.