Euler turbulence has been experimentally observed to relax to a metaequilibrium state that does not maximize the Boltzmann entropy, but rather seems to minimize enstrophy. We show that a recent generalization of thermodynamics and statistics due to Tsallis is capable of explaining this phenomenon in a natural way. The maximization of the generalized entropy S 1/2 for this system leads to precisely the same profiles predicted by the Restricted Minimum Enstrophy theory of Huang and Driscoll. This makes possible the construction of a comprehensive thermodynamic description of Euler turbulence.
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.
We consider a general class of discrete unitary dynamical models on the lattice. We show that generically such models give rise to a wavefunction satisfying a Schrödinger equation in the continuum limit, in any number of dimensions. There is a simple mathematical relationship between the mass of the Schrödinger particle and the eigenvalues of a unitary matrix describing the local evolution of the model. Second quantized versions of these unitary models can be defined, describing in the continuum limit the evolution of a nonrelativistic quantum many-body theory. An arbitrary potential is easily incorporated into these systems. The models we describe fall in the class of quantum lattice gas automata, and can be implemented on a quantum computer with a speedup exponential in the number of particles in the system. This gives an efficient algorithm for simulating general nonrelativistic interacting quantum many-body systems on a quantum computer.
Algorithms are described for efficiently simulating quantum mechanical systems on quantum computers. A class of algorithms for simulating the Schrödinger equation for interacting many-body systems are presented in some detail. These algorithms would make it possible to simulate nonrelativistic quantum systems on a quantum computer with an exponential speedup compared to simulations on classical computers. Issues involved in simulating relativistic systems of Dirac and gauge particles are discussed. * Expanded version of a talk given by WT at the PhysComp '96 conference,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.