Insulin-expressing beta cells, found in pancreatic islets, are capable of generating more beta cells even in the adult. We show that fibroblast-like cells derived from adult human islets donated postmortem proliferate readily in vitro. These mesenchymal-type cells, which exhibit no hormone expression, can then be induced to differentiate into hormone-expressing islet-like cell aggregates, which reestablishes the epithelial character typical of islet cells. Immunohistochemistry, in situ hybridization, and messenger RNA measurements in single cells and cell populations establish the transition of epithelial cells within islets to mesenchymal cells in culture and then to insulin-expressing epithelial cells.
The receptors for thyroid hormone (T3R) and retinoic acid (RAR) are members of a nuclear receptor subfamily that are capable of recognizing similar DNA sequences. Native response elements for T3R and RAR consist of two or more putative half-site binding motifs organized as imperfect direct or inverted repeats separated by different sized nucleotide gaps. To clarify how T3R, RAR, and related factors recognize DNA response elements, we analyzed the interaction of purified receptors with a series of inverted and direct repeats of an idealized AGGTCA half-site separated by different sized nucleotide gaps. Our results indicate that RAR and T3R can bind to half-sites as monomers and, depending on the orientation and distance between half-sites, also bind as homodimers or T3R-RAR heterodimers. T3R also binds to certain DNA elements as a heterodimer with one or more nuclear factors from eucaryotic cells. Thus, the orientation and spacing of half-sites play a central role in determining which configuration of receptors and nuclear factors will interact with a specific DNA element. This along with the ability of these factors to participate in reversible protein-protein interactions serve to broaden and diversify the responses mediated by T3R, RAR, and related members of this nuclear receptor subfamily.
SummaryPerilipin family proteins (Plins) coat the surface of intracellular neutral lipid storage droplets in various cell types. Studies across diverse species demonstrate that Plins regulate lipid storage metabolism through recruitment of lipases and other regulatory proteins to lipid droplet surfaces. Mammalian genomes have distinct Plin gene members and additional protein forms derived from specific mRNA splice variants. However, it is not known if the different Plins have distinct functional properties. Using biochemical, cellular imaging and flow cytometric analyses, we now show that within individual cells of various types, the different Plin proteins preferentially sequester to separate pools of lipid storage droplets. By examining ectopically expressed GFP fusions and all endogenous Plin protein forms, we demonstrate that different Plins sequester to different types of lipid droplets that are composed of either triacylcerides or cholesterol esters. Furthermore, Plins with strong association preferences to triacylceride (or cholesterol ester) droplets can re-direct the relative intracellular triacylceride–cholesterol ester balance toward the targeted lipid. Our data suggest diversity of Plin function, alter previous assumptions about shared collective actions of the Plins, and indicate that each Plin can have separate and unique functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.