The hypothesis that movement of biological ions may be predicted by cyclotron resonance theory applied to cell membranes is tested in these experiments. Diatoms (Amphora coffeaeformis) were chosen as the biosystem since they move or don't move, depending on how much calcium is transported across the membrane. The experiments demonstrate that a particular ion (calcium) is apparently moved across the cell membrane in response to the DC and AC values of magnetic flux densities (B) and the frequency derived from the cyclotron resonance theory. A clear resonance is shown and a rather sharp frequency response curve is demonstrated. The experiments also show a dose response as the AC value of the flux density is varied, and that odd harmonics of the basic cyclotron frequency are also effective.
The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.
Artificial joints are subject to chronic infections associated with bacterial biofilms, which only can be eradicated by the traumatic removal of the implant followed by sustained intravenous antibiotic therapy. We have adopted an engineering approach to develop electrical-current-based approaches to bacterial eradication and microelectromechanical systems that could be embedded within the implanted joint to detect the presence of bacteria and to provide in situ treatment of the infection before a biofilm can form. In the former case we will examine the combined bactericidal effects of direct and indirect electrical fields in combination with antibiotic therapy. In the latter case, bacterial detection will occur by developing a microelectromechanical-systems-based biosensor that can "eavesdrop" on bacterial quorum-sensing-based communication systems. Treatment will be effected by the release of a cocktail of pharmaceutical reagents contained within integral reservoirs associated with the implant, including a molecular jamming signal that competitively binds to the bacteria's quorum sensing receptors (which will "blind" the bacteria, preventing the production of toxins) and multiple high dose antibiotics to eradicate the planktonic bacteria. This approach is designed to take advantage of the relatively high susceptibility to antibiotics that planktonic bacteria display compared with biofilm envirovars. Here we report the development of a generic microelectromechanical systems biosensor that measures changes in internal viscosity in a base fluid triggered by a change in the external environment.
The role of electrolysis products, including protons, hydroxyl ions, reactive oxygen intermediates, oxygen, hydrogen, and heat, in mediating electrical enhancement of killing of Pseudomonas aeruginosa biofilms by tobramycin (the bioelectric effect) was investigated. The log reduction in biofilm viable cell numbers compared to the numbers for the untreated positive control effected by antibiotic increased from 2.88 in the absence of electric current to 5.58 in the presence of electric current. No enhancement of antibiotic efficacy was observed when the buffer composition was changed to simulate the reduced pH that prevails during electrolysis. Neither did stabilization of the pH during electrical treatment by increasing the buffer strength eliminate the bioelectric effect. The temperature increase measured in our experiments, less than 0.2°C, was far too small to account for the greatly enhanced antibiotic efficacy. The addition of sodium thiosulfate, an agent capable of rapidly neutralizing reactive oxygen intermediates, did not abolish electrical enhancement of killing. The bioelectric effect persisted when all of the ionic constituents of the medium except the two phosphate buffer components were omitted. This renders the possibility of electrochemical generation of an inhibitory ion, such as nitrite from nitrate, an unlikely explanation for electrical enhancement. The one plausible explanation for the bioelectric effect revealed by this study was the increased delivery of oxygen to the biofilm due to electrolysis. When gaseous oxygen was bubbled into the treatment chamber during exposure to tobramycin (without electric current), a 1.8-log enhancement of killing resulted. The enhancement of antibiotic killing by oxygen was not due simply to physical disturbances caused by sparging the gas because similar delivery of gaseous hydrogen caused no enhancement whatsoever.
The use of Helmholtz aiding coils to induce small electromagnetic (EM) fields in living tissue for both medical and research purposes has become quite common. While much progress has been made in showing that these induced EM signals can cause a variety of effects in tissues and individual cells, a satisfactory explanation of how the effects occur or how the EM signals couple to the tissue has not yet emerged. To address the latter problem adequately, it becomes necessary to know the spatial distribution of the induced fields inside a given set of boundaries. This paper examines the situation used for much in vitro research where a cylindrical culture dish is filled with a conducting solution and placed between the Helmholtz coils. Two cases are considered. The first assumes that the coils are above and below the culture dish (the planes of the coils are parallel with the top and bottom of the dish); the second assumes that the planes of the coils are parallel with the sides of the dish. A closed form solution is obtained for both cases, and it is shown that the induced EM field distribution is markedly different for the two cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.