Using brain transcriptomic profiles from 853 individual honey bees exhibiting 48 distinct behavioral phenotypes in naturalistic contexts, we report that behavior-specific neurogenomic states can be inferred from the coordinated action of transcription factors (TFs) and their predicted target genes. Unsupervised hierarchical clustering of these transcriptomic profiles showed three clusters that correspond to three ecologically important behavioral categories: aggression, maturation, and foraging. To explore the genetic influences potentially regulating these behavior-specific neurogenomic states, we reconstructed a brain transcriptional regulatory network (TRN) model. This brain TRN quantitatively predicts with high accuracy gene expression changes of more than 2,000 genes involved in behavior, even for behavioral phenotypes on which it was not trained, suggesting that there is a core set of TFs that regulates behavior-specific gene expression in the bee brain, and other TFs more specific to particular categories. TFs playing key roles in the TRN include well-known regulators of neural and behavioral plasticity, e.g., Creb, as well as TFs better known in other biological contexts, e.g., NF-κB (immunity). Our results reveal three insights concerning the relationship between genes and behavior. First, distinct behaviors are subserved by distinct neurogenomic states in the brain. Second, the neurogenomic states underlying different behaviors rely upon both shared and distinct transcriptional modules. Third, despite the complexity of the brain, simple linear relationships between TFs and their putative target genes are a surprisingly prominent feature of the networks underlying behavior.Apis mellifera | gene regulation | social behavior | systems biology B ehavior is influenced by both heritable and environmental factors, sometimes via massive changes in brain transcriptomes (1). An emerging insight is that these changes induce shifts in "neurogenomic states" rather than activation of particular genes only in local neural circuits (2). This has led to the idea that distinct neurogenomic states underlie distinct behaviors (1), but it is not known how these states are defined or maintained. Further, the regulatory architecture of behaviorally relevant neurogenomic states has not been studied, and it is not known whether behavior is subserved by the kinds of transcriptional regulatory networks (TRNs) known for other phenotypes (3-6).We applied tools and perspectives from molecular systems biology-used to study transcriptional regulation in the brain and elsewhere (3-6)-to transcript profiles from the BeeSpace Project, which used microarray analysis to study hereditary and environmental influences on brain gene expression and social behavior (Methods). This provided a unique aggregate dataset from a single laboratory (G.E.R.), using the same analytical platform, protocols, and analysis procedures (7). Because the natural behavioral repertoire of the honey bee (Apis mellifera) is perhaps the best studied of any nonhuman a...
pages indicated that there was limited overlap betweenThe Internet provides an exceptional testbed for develthe homepages retrieved by the subject-suggested and oping algorithms that can improve browsing and searchthesaurus-suggested terms. Since the retrieved homeing large information spaces. Browsing and searching
The Internet provides an exceptional testbed for developing algorithms that can improve browsing and searching large information spaces. Browsing and searching tasks are susceptible to problems of information overload and vocabulary differences. Much of the current research is aimed at the development and refinement of algorithms to improve browsing and searching by addressing these problems. Our research was focused on discovering whether two of the algorithms our research group has developed, a Kohonen algorithm category map for browsing, and an automatically generated concept space algorithm for searching, can help improve browsing and/or searching the Internet. Our results indicate that a Kohonen self‐organizing map (SOM)‐based algorithm can successfully categorize a large and eclectic Internet information space (the Entertainment sub‐category of Yahoo!) into manageable sub‐spaces that users can successfully navigate to locate a homepage of interest to them. The SOM algorithm worked best with browsing tasks that were very broad, and in which subjects skipped around between categories. Subjects especially liked the visual and graphical aspects of the map. Subjects who tried to do a directed search, and those that wanted to use the more familiar mental models (alphabetic or hierarchical organization) for browsing, found that the map did not work well. The results from the concept space experiment were especially encouraging. There were no significant differences among the precision measures for the set of documents identified by subject‐suggested terms, thesaurus‐suggested terms, and the combination of subject‐ and thesaurus‐suggested terms. The recall measures indicated that the combination of subject‐ and thesaurus‐suggested terms exhibited significantly better recall than subject‐suggested terms alone. Furthermore, analysis of the home pages indicated that there was limited overlap between the homepages retrieved by the subject‐suggested and thesaurus‐suggested terms. Since the retrieved homepages for the most part were different, this suggests that a user can enhance a keyword‐based search by using an automatically generated concept space. Subjects especially liked the level of control that they could exert over the search, and the fact that the terms suggested by the thesaurus were “real” (i.e., originating in the homepages) and therefore guaranteed to have retrieval success. © 1998 John Wiley & Sons, Inc.
Mobile devices have the potential to continuously monitor health by collecting movement data including walking speed during natural walking. Natural walking is walking without artificial speed constraints present in both treadmill and nurse-assisted walking. Fitness trackers have become popular which record steps taken and distance, typically using a fixed stride length. While useful for everyday purposes, medical monitoring requires precise accuracy and testing on real patients with a scientifically valid measure. Walking speed is closely linked to morbidity in patients and widely used for medical assessment via measured walking. The 6-min walk test (6MWT) is a standard assessment for chronic obstructive pulmonary disease and congestive heart failure. Current generation smartphone hardware contains similar sensor chips as in medical devices and popular fitness devices. We developed a middleware software, MoveSense, which runs on standalone smartphones while providing comparable readings to medical accelerometers. We evaluate six machine learning methods to obtain gait speed during natural walking training models to predict natural walking speed and distance during a 6MWT with 28 pulmonary patients and ten subjects without pulmonary condition. We also compare our model's accuracy to popular fitness devices. Our universally trained support vector machine models produce 6MWT distance with 3.23% error during a controlled 6MWT and 11.2% during natural free walking. Furthermore, our model attains 7.9% error when tested on five subjects for distance estimation compared to the 50-400% error seen in fitness devices during natural walking.
We have developed GaitTrack, a phone application to detect health status while the smartphone is carried normally. GaitTrack software monitors walking patterns, using only accelerometers embedded in phones to record spatiotemporal motion, without the need for sensors external to the phone. Our software transforms smartphones into health monitors, using eight parameters of phone motion transformed into body motion by the gait model. GaitTrack is designed to detect health status while the smartphone is carried during normal activities, namely, free-living walking. The current method for assessing free-living walking is medical accelerometers, so we present evidence that mobile phones running our software are more accurate. We then show our gait model is more accurate than medical pedometers for counting steps of patients with chronic disease. Our gait model was evaluated in a pilot study involving 30 patients with chronic lung disease. The six-minute walk test (6MWT) is a major assessment for chronic heart and lung disease, including congestive heart failure and especially chronic obstructive pulmonary disease (COPD), affecting millions of persons. The 6MWT consists of walking back and forth along a measured distance for 6 minutes. The gait model using linear regression performed with 94.13% accuracy in measuring walk distance, compared with the established standard of direct observation. We also evaluated a different statistical model using the same gait parameters to predict health status through lung function. This gait model has high accuracy when applied to demographic cohorts, for example, 89.22% accuracy testing the cohort of 12 female patients with ages 50-64 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.