The effects of light exposure on 3-isobutyl-2-methoxypyrazine (IBMP) accumulation and degradation in Vitis vinifera L. cv. Cabernet Franc berries were assessed by comparison of shaded and exposed clusters within the same vine throughout a growing season. Twenty-seven vines were shoot-thinned to create regions of high and low cluster-light exposure within each vine. Samples were collected at 10 time points starting from 5 to 130 days postbloom. The experimental design allowed for intravine comparison of IBMP levels between treatments at each time. Vine-to-vine variability of IBMP and the correlation of IBMP to malic acid were also evaluated. Cluster exposure reduced accumulation of IBMP at all preveraison time points by 21-44%, but did not increase postveraison degradation. Significant vine-to-vine variability in IBMP content was observed, with the highest level of IBMP in shaded berries in the most vigorous block of vines. Although IBMP concentration by weight decreased significantly due to dilution just prior to color change (veraison), no significant IBMP degradation per berry occurred until after color change (day 70 postbloom). By contrast, malic acid degradation began prior to color change, and malic acid concentrations were not affected by cluster exposure preveraison, but were affected postveraison. A survey of 13 sites in New York state (Seneca Lake) showed that IBMP concentrations at 2 weeks preveraison were highly correlated (R(2) = 0.936, p < 0.0001) to levels at harvest, whereas classic grape maturity indices at harvest were uncorrelated with IBMP at harvest. In summary, light exposure conditions critically influence IBMP accumulation but not IBMP degradation.
Sunlight exposure of winegrape clusters is frequently reported to increase C(13)-norisoprenoids in resulting wines, but the timing and mechanism of this influence is not well understood. Fruit zone leaf removal was applied to Vitis vinifera cv. Riesling at three timings: 2, 33 and 68 days past berry set (PBS), and compared to an untreated control. Free and total 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), vitispirane and beta-damascenone were measured in juice and wines, and carotenoid profiles were determined in grapes at midseason and maturity. Significantly higher total TDN was observed in grapes from the 33-day PBS treatment compared to the control and other treatments (195 microg/L vs 54-87 microg/L). Total vitispirane in juice was also significantly increased in the 33-day PBS treatment, while total beta-damascenone was reduced in the 68-day PBS treatment compared to the control. Existing HPLC protocols were modified to allow for quantification of zeaxanthin in V. vinifera berries, and zeaxanthin was determined to be significantly higher in the 33-day PBS treatment than the control or other treatments (p < 0.05). Total TDN in juice correlated with free TDN in wine, with 11.0% +/- 2.5% of total juice TDN converted to free TDN in wine. In contrast, total vitispirane increased significantly during fermentation, and was not correlated with vitispirane in juice. In summary, leaf removal at 33 days PBS significantly increased zeaxanthin in Riesling grapes midseason, total TDN and vitispirane in the juice of mature Riesling grapes, and free and total TDN in finished wine, while earlier or later leaf removal had no effect.
We describe an optimized protocol for analysis of the herbaceous smelling 3-alkyl-2-methoxypyrazines (MPs) in whole berries that predicts MPs in resultant red wines. Berries are homogenized by bead-milling with a deuterated standard prior to headspace solid phase microextraction (HS-SPME) and quantification by two-dimensional gas chromatography time-of-flight-mass-spectrometry (GCxGC-TOF-MS). In the case of 3-isopropyl-2-methoxypyrazine (IPMP), GCxGC-TOF-MS successfully resolved interferences that coeluted with the analyte in the first dimension. HS-SPME parameters (pH, queue time, incubation time, extraction time, extraction temperature) were optimized by a statistical experimental design. Good method accuracy was observed (consistent ratio of unlabeled analyte to labeled standard) at 10 min extraction times when 80 degrees C extraction temperatures were employed, although increasing sensitivity was observed for longer extraction times (up to 140 min). Standard addition of 3-isobutyl-2-methoxypyrazine (IBMP) and IPMP into preveraison and harvest ripe berry matrices showed good linearity (r(2) >0.99 in all cases), with limits of detection ranging from 0.6 to 1.8 pg/g. The protocol was validated by comparing IBMP in 16 lots of Cabernet Franc berries (range = undetectable to 18.4 pg/g) to the resulting wines (range = undetectable to 14.5 pg/g). Berry and wine MP content were strongly correlated, (r(2) = 0.97, p < 0.0001). Following correction for CO(2) loss, the observed concentration of IBMP in wines was 67 +/- 13% of the IBMP concentration observed in berries.
BackgroundDocosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) are the major long chain polyunsaturated fatty acids (LCPUFA) of the central nervous system (CNS). These nutrients are present in most infant formulas at modest levels, intended to support visual and neural development. There are no investigations in primates of the biological consequences of dietary DHA at levels above those present in formulas but within normal breastmilk levels.Methods and FindingsTwelve baboons were divided into three formula groups: Control, with no DHA-ARA; “L”, LCPUFA, with 0.33%DHA-0.67%ARA; “L3”, LCPUFA, with 1.00%DHA-0.67%ARA. All the samples are from the precentral gyrus of cerebral cortex brain regions. At 12 weeks of age, changes in gene expression were detected in 1,108 of 54,000 probe sets (2.05%), with most showing <2-fold change. Gene ontology analysis assigns them to diverse biological functions, notably lipid metabolism and transport, G-protein and signal transduction, development, visual perception, cytoskeleton, peptidases, stress response, transcription regulation, and 400 transcripts having no defined function. PLA2G6, a phospholipase recently associated with infantile neuroaxonal dystrophy, was downregulated in both LCPUFA groups. ELOVL5, a PUFA elongase, was the only LCPUFA biosynthetic enzyme that was differentially expressed. Mitochondrial fatty acid carrier, CPT2, was among several genes associated with mitochondrial fatty acid oxidation to be downregulated by high DHA, while the mitochondrial proton carrier, UCP2, was upregulated. TIMM8A, also known as deafness/dystonia peptide 1, was among several differentially expressed neural development genes. LUM and TIMP3, associated with corneal structure and age-related macular degeneration, respectively, were among visual perception genes influenced by LCPUFA. TIA1, a silencer of COX2 gene translation, is upregulated by high DHA. Ingenuity pathway analysis identified a highly significant nervous system network, with epidermal growth factor receptor (EGFR) as the outstanding interaction partner.ConclusionsThese data indicate that LCPUFA concentrations within the normal range of human breastmilk induce global changes in gene expression across a wide array of processes, in addition to changes in visual and neural function normally associated with formula LCPUFA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.