We address the problem of deciding when to spin down the disk of a mobile computer in order to extend battery life. Since one of the most critical resources in mobile computing environments is battery life, good energy conservation methods can dramatically increase the utility of mobile systems. We use a simple and efficient algorithm based on machine learning techniques that has excellent performance in practice. Our experimental results are based on traces collected from HP C2474s disks. Using this data, the algorithm outperforms several algorithms that are theoretically optimal in under various worst-case assumptions, as well as the best fixed time-out strategy. In particular, the algorithm reduces the power consumption of the disk to about half (depending on the disk's properties) of the energy consumed by a one minute fixed time-out. Since the algorithm adapts to usage patterns, it uses as little as 88% of the energy consumed by the best fixed time-out computed in retrospect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.