Pacific low‐frequency variability (timescale > 8 years) exhibits a well‐known El Niño‐like pattern of basin‐scale sea surface temperature, which is found in all the major modes of Pacific decadal climate. Using a set of climate model experiments and observations, we decompose the mechanisms contributing to the growth, peak, and decay of the Pacific low‐frequency spatial variance. We find that the El Niño‐like interdecadal pattern is established through the combined actions of Pacific meridional modes (MM) and the El Niño–Southern Oscillation (ENSO). Specifically, in the growth phase of the pattern, subtropical stochastic excitation of the MM energizes the tropical low‐frequency variance acting as a red noise process. Once in the tropics, this low‐frequency variance is amplified by ocean‐atmospheric feedbacks as the pattern reaches its peak phase. At the same time, atmospheric teleconnections distribute the variance from the tropics to the extratropics, where the pattern ultimately decays. In this stochastic red noise model of Pacific climate, the timescale of the extra‐tropical/tropical interactions (1–2 years) permits the stochastic excitation of the ENSO‐like pattern of decadal and interdecadal variance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.