Abstract-Robotics and related technologies have begun to realize their promise to improve the delivery of rehabilitation therapy. However, the mechanism by which they enhance recovery remains unclear. Ultimately, recovery depends on biology, yet the details of the recovery process remain largely unknown; a deeper understanding is important to accelerate refinements of robotic therapy or suggest new approaches. Fortunately, robots provide an excellent instrument platform from which to study recovery at the behavioral level. This article reviews some initial insights about the process of upper-limb behavioral recovery that have emerged from our work. Evidence to date suggests that the form of therapy may be more important than its intensity: muscle strengthening offers no advantage over movement training. Passive movement is insufficient; active participation is required. Progressive training based on measures of movement coordination yields substantially improved outcomes. Together these results indicate that movement coordination rather than muscle activation may be the most appropriate focus for robotic therapy.
A possible source for transplantable neurons in Parkinson's disease are adult olfactory bulb (OB) dopamine (DA) progenitors that originate in the anterior subventricular zone and reach the OB through the rostral migratory stream. We used adult transgenic mice expressing a lacZ reporter directed by an 8.9 kb tyrosine hydroxylase (TH) promoter to investigate the course of DAergic differentiation. Parallel transgene and intrinsic TH mRNA expression occurred during migration of DA interneurons through the mitral and superficial granule cell layers before these cells reached their final periglomerular position. Differential transgene and calcium-calmodulin-dependent protein kinase IV expression distinguished two nonoverlapping populations of interneurons. Transgenic mice carrying a TH8.9kb/lacZ construct with a mutant AP-1 site demonstrated that this element confers OB DA-specific TH gene regulation. These results indicate that DA phenotypic determination is specific to a subset of mobile OB progenitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.