This paper presents studies of the coordination of voluntary human arm movements. A mathematical model is formulated which is shown to predict both the qualitative features and the quantitative details observed experimentally in planar, multijoint arm movements. Coordination is modeled mathematically by defining an objective function, a measure of performance for any possible movement. The unique trajectory which yields the best performance is determined using dynamic optimization theory. In the work presented here, the objective function is the square of the magnitude of jerk (rate of change of acceleration) of the hand integrated over the entire movement. This is equivalent to assuming that a major goal of motor coordination is the production of the smoothest possible movement of the hand. Experimental observations of human subjects performing voluntary unconstrained movements in a horizontal plane are presented. They confirm the following predictions of the mathematical model: unconstrained point-to-point motions are approximately straight with bell-shaped tangential velocity profiles; curved motions (through an intermediate point or around an obstacle) have portions of low curvature joined by portions of high curvature; at points of high curvature, the tangential velocity is reduced; the durations of the low-curvature portions are approximately equal. The theoretical analysis is based solely on the kinematics of movement independent of the dynamics of the musculoskeletal system and is successful only when formulated in terms of the motion of the hand in extracorporal space. The implications with respect to movement organization are discussed.
This three-part paper presents an approach to the control of dynamic interaction between a manipulator and its environment. Part I presented the theoretical reasoning behind impedance control. In Part II the implementation of impedance control is considered. A feedback control algorithm for imposing a desired cartesian impedance on the end-point of a nonlinear manipulator is presented. This algorithm completely eliminates the need to solve the “inverse kinematics problem” in robot motion control. The modulation of end-point impedance without using feedback control is also considered, and it is shown that apparently “redundant” actuators and degrees of freedom such as exist in the primate musculoskeletal system may be used to modulate end-point impedance and may play an essential functional role in the control of dynamic interaction.
Our goal is to apply robotics and automation technology to assist, enhance, quantify, and document neurorehabilitation. This paper reviews a clinical trial involving 20 stroke patients with a prototype robot-aided rehabilitation facility developed at the Massachusetts Institute of Technology, Cambridge, (MIT) and tested at Burke Rehabilitation Hospital, White Plains, NY. It also presents our approach to analyze kinematic data collected in the robot-aided assessment procedure. In particular, we present evidence 1) that robot-aided therapy does not have adverse effects, 2) that patients tolerate the procedure, and 3) that peripheral manipulation of the impaired limb may influence brain recovery. These results are based on standard clinical assessment procedures. We also present one approach using kinematic data in a robot-aided assessment procedure.
Smoothness is characteristic of coordinated human movements, and stroke patients' movements seem to grow more smooth with recovery. We used a robotic therapy device to analyze five different measures of movement smoothness in the hemiparetic arm of 31 patients recovering from stroke. Four of the five metrics showed general increases in smoothness for the entire patient population. However, according to the fifth metric, the movements of patients with recent stroke grew less smooth over the course of therapy. This pattern was reproduced in a computer simulation of recovery based on submovement blending, suggesting that progressive blending of submovements underlies stroke recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.