Abstract-this paper presents a HEVC based multi-view video codec. The frames of the multi-view videos are interleaved to generate a monoscopic video sequence. The interleaving is conducted in a way to increase the exploitation of the temporal and inter-views correlations. The MV-HEVC standard codec is configured to work as a single layered codec, which functions as a monoscipic HEVC codec with AVC capabilities, and used to encode interleaved multi-view video frames. The performance of the codec is compared with the anchor standard MV-HEVC codec by coding the three standard multi-view video sequences: "Balloon", "Kendo" and "Newspaper1". Experimental results show the proposed codec out performs the anchor standard MV-HEVC codec in term of bitrate and PSNR.
Development of stereo video codecs in latest multi-view extension of HEVC (MV-HEVC) with higher compression efficiency has been an active area of research. In this paper, a frame interleaved stereo video coding scheme based on MV-HEVC standard codec is proposed. The proposed codec applies a reduced layer approach to encode the frame interleaved stereo sequences. A frame interleaving algorithm is developed to reorder the stereo video frames into a monocular video, such that the proposed codec can gain advantage from interviews and temporal correlations to improve its coding performance. To evaluate the performance of the proposed codec; three standard multi-view test video sequences, named "Poznan_Street", "Kendo" and "Newspaper1", were selected and coded using the proposed codec and the standard MV-HEVC codec at different QPs and bitrates. Experimental results show that the proposed codec gives a significantly higher coding performance to that of the standard MV-HEVC codec at all bitrates.
There has been increasing demand for multiview video transmission over band limited channel over past years and various techniques have been proposed to fulfil this need. In this paper, a High Efficiency Video Codec (HEVC) based spatial resolution scaling type of mixed resolution coding model, MRHEVC-MVC, for frame interleaved multiview videos is presented. However, enabling the HEVC to encode video with different frame resolutions is a challenge due to the coding tree partitioning used by the codec. This has been overcome by super-imposing the low resolution replica of each full resolution frame on their respective decoded picture buffer and setting the remaining space of the frame buffer to zero. The codec's reference frames structure is designed to efficiently encode frame interleaved multiview videos using a HEVC based mixed resolution codec. The proposed MRHEVC-MVC codec has been tested against the standard multiview extension of high efficiency video codec (MV-HEVC) for BBalloon^, BNewspaper1^, BUndo_Dancer^, BKendo^and BBPoznan_Street^standard multiview video sequences. Results show that the proposed codec gives significantly higher coding performance to that of the MV-HEVC codec at low bitrate both subjectively and objectively.
The standard HEVC codec and its extension for coding multiview videos, known as MV-HEVC, have proven to deliver improved visual quality compared to its predecessor, H.264/MPEG-4 AVC’s multiview extension, H.264-MVC, for the same frame resolution with up to 50% bitrate savings. MV-HEVC’s framework is similar to that of H.264-MVC, which uses a multi-layer coding approach. Hence, MV-HEVC would require all frames from other reference layers decoded prior to decoding a new layer. Thus, the multi-layer coding architecture would be a bottleneck when it comes to quicker frame streaming across different views. In this paper, an HEVC-based Frame Interleaved Stereo/Multiview Video Codec (HEVC-FISMVC) that uses a single layer encoding approach to encode stereo and multiview video sequences is presented. The frames of stereo or multiview video sequences are interleaved in such a way that encoding the resulting monoscopic video stream would maximize the exploitation of temporal, inter-view, and cross-view correlations and thus improving the overall coding efficiency. The coding performance of the proposed HEVC-FISMVC codec is assessed and compared with that of the standard MV-HEVC’s performance for three standard multi-view video sequences, namely: “Poznan_Street”, “Kendo” and “Newspaper1”. Experimental results show that the proposed codec provides more substantial coding gains than the anchor MV-HEVC for coding both stereo and multi-view video sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.