In studies of hepatic phagocyte depletion in mice, we found that myeloid precursors can differentiate into liver macrophages and dendritic cells, which each localize to distinct tissue compartments. During replenishment, macrophages acquire the ability to respond appropriately to hepatic injury and to remove bacteria from the blood stream.
Drug-induced liver injury (DILI) is an important cause of acute liver failure, with limited therapeutic options. During DILI, oncotic necrosis with concomitant release and recognition of intracellular content amplifies liver inflammation and injury. Among these molecules, self-DNA has been widely shown to trigger inflammatory and autoimmune diseases; however, whether DNA released from damaged hepatocytes accumulates into necrotic liver and the impact of its recognition by the immune system remains elusive. Here we show that treatment with two different hepatotoxic compounds (acetaminophen and thioacetamide) caused DNA release into the hepatocyte cytoplasm, which occurred in parallel with cell death in vitro. Administration of these compounds in vivo caused massive DNA deposition within liver necrotic areas, together with an intravascular DNA coating. Using confocal intravital microscopy, we revealed that liver injury due to acetaminophen overdose led to a directional migration of neutrophils to DNA-rich areas, where they exhibit an active patrolling behavior. DNA removal by intravenous DNASE1 injection or ablation of Toll-like receptor 9 (TLR9)-mediated sensing significantly reduced systemic inflammation, liver neutrophil recruitment, and hepatotoxicity. Analysis of liver leukocytes by flow cytometry revealed that emigrated neutrophils up-regulated TLR9 expression during acetaminophen-mediated necrosis, and these cells sensed and reacted to extracellular DNA by activating the TLR9/NF-jB pathway. Likewise, adoptive transfer of wild-type neutrophils to TLR9 2/2 mice reversed the hepatoprotective phenotype otherwise observed in TLR9 absence. Conclusion: Hepatic DNA accumulation is a novel feature of DILI pathogenesis. Blockage of DNA recognition by the innate immune system may constitute a promising therapeutic venue. (HEPATOLOGY 2015;61:348-360) See Editorial on Page 35 D rug-induced liver injury (DILI) is a serious condition, with a high mortality rate and limited therapeutic alternatives.1 Among these
Every day, megakaryocytes produce billions of platelets that circulate for several days and eventually are cleared by the liver. The exact removal mechanism, however, remains unclear. Loss of sialic acid residues is thought to feature in the aging and clearance of platelets. Using state-of-the-art spinning disk intravital microscopy to delineate the different compartments and cells of the mouse liver, we observed rapid accumulation of desialylated platelets predominantly on Kupffer cells, with only a few on endothelial cells and none on hepatocytes. Kupffer cell depletion prevented the removal of aged platelets from circulation. Ashwell-Morell receptor (AMR) deficiency alone had little effect on platelet uptake. Macrophage galactose lectin (MGL) together with AMR mediated clearance of desialylated or cold-stored platelets by Kupffer cells. Effective clearance is critical, as mice with an aged platelet population displayed a bleeding phenotype. Our data provide evidence that the MGL of Kupffer cells plays a significant role in the removal of desialylated platelets through a collaboration with the AMR, thereby maintaining a healthy and functional platelet compartment.
Highlights d Th1-Th2 cross-regulation impacts early Leishmania skin infection via monocyte recruitment d STAT6 reduces monocyte recruitment via IFN-g but controls phagocyte activation via IL-10 d Infected monocytes attain an alternatively activated PDL2+phenotype in a Th1 environment d Th2 immunity does not facilitate pathogen replication on a per cell basis
SummaryChemotaxis is fundamental for leukocyte migration in immunity and inflammation and contributes to the pathogenesis of many human diseases. Although chemokines and various other chemoattractants were initially appreciated as important mediators of acute inflammation, in the past years they have emerged as critical mediators of cell migration during immune surveillance, organ development, and cancer progression. Such advances in our knowledge in chemokine biology have paved the way for the development of specific pharmacological targets with great therapeutic potential. Chemoattractants may belong to different classes, including a complex chemokine system of approximately 50 endogenous molecules that bind to G protein‐coupled receptors, which are expressed by a wide variety of cell types. Also, an unknown number of other chemoattractants may be generated by pathogens and damaged/dead cells. Therefore, blocking chemotaxis without causing side effects is an extremely challenging task. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the whole organ level in homeostasis, inflammation, and infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.