Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that affects the upper and lower motor neurons. 5–10% of cases are genetically inherited, including ALS type 20, which is caused by mutations in the hnRNPA1 gene. The goals of this work are to analyze the effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on hnRNPA1 protein function, to model the complete tridimensional structure of the protein using computational methods and to assess structural and functional differences between the wild type and its variants through Molecular Dynamics simulations. nsSNP, PhD-SNP, Polyphen2, SIFT, SNAP, SNPs&GO, SNPeffect and PROVEAN were used to predict the functional effects of nsSNPs. Ab initio modeling of hnRNPA1 was made using Rosetta and refined using KoBaMIN. The structure was validated by PROCHECK, Rampage, ERRAT, Verify3D, ProSA and Qmean. TM-align was used for the structural alignment. FoldIndex, DICHOT, ELM, D2P2, Disopred and DisEMBL were used to predict disordered regions within the protein. Amino acid conservation analysis was assessed by Consurf, and the molecular dynamics simulations were performed using GROMACS. Mutations D314V and D314N were predicted to increase amyloid propensity, and predicted as deleterious by at least three algorithms, while mutation N73S was predicted as neutral by all the algorithms. D314N and D314V occur in a highly conserved amino acid. The Molecular Dynamics results indicate that all mutations increase protein stability when compared to the wild type. Mutants D314N and N319S showed higher overall dimensions and accessible surface when compared to the wild type. The flexibility level of the C-terminal residues of hnRNPA1 is affected by all mutations, which may affect protein function, especially regarding the protein ability to interact with other proteins.
Abnormal levels of fibroblast growth factors (FGFs) and FGF receptors (FGFRs) have been detected in various neurological disorders. The potent impact of FGF-FGFR in multiple embryonic developmental processes makes it challenging to elucidate their roles in postmitotic neurons. Taking an alternative approach to examine the impact of aberrant FGFR function on glutamatergic neurons, we generated a FGFR gain-of-function (GOF) transgenic mouse, which expresses constitutively activated FGFR3 (FGFR3K650E) in postmitotic glutamatergic neurons. We found that GOF disrupts mitosis of radial-glia neural progenitors (RGCs), inside-out radial migration of post-mitotic glutamatergic neurons, and axonal tract projections. In particular, late-born CUX1-positive neurons are widely dispersed throughout the GOF cortex. Such a cortical migration deficit is likely caused, at least in part, by a significant reduction of the radial processes projecting from RGCs. RNA-sequencing analysis of the GOF embryonic cortex reveals significant alterations in several pathways involved in cell cycle regulation and axonal pathfinding. Collectively, our data suggest that FGFR3 GOF in postmitotic neurons not only alters axonal growth of postmitotic neurons but also impairs RGC neurogenesis and radial glia processes.
Abnormal levels of fibroblast growth factors (FGFs) and FGF receptors (FGFRs) have been detected in various neurological disorders. The potent impact of FGF-FGFR in multiple embryonic developmental processes makes it challenging to elucidate their roles in post-mitotic neurons. Taking an alternative approach, we directly examined the impact of aberrant FGFR function after neurogenesis by generating a FGFR gain-of-function (GOF) transgenic mouse which expresses constitutively activated FGFR3 (FGFR3 K650E ) in post-mitotic glutamatergic neurons. We found that enhanced FGFR activity in glutamatergic neurons results in abnormal radial migration and axonal miswiring. Regarding the lamination phenotype in GOF brains, we found later-born Cux1-positive neurons are dispersed throughout the GOF cortex. Such a cortical migration deficit is likely caused, at least in part, by a significant reduction of the radial processes normally projecting from the radial glia cells (RGCs). In addition, FGFR3 GOF also results in the misrouting of several long-range axonal projections, including the corpus callosum, anterior commissure, and postcommissural fornix. RNA-sequencing analysis of the GOF embryonic cortex reveals significant alterations in several pathways involved in cell cycle regulation and axonal pathfinding. Collectively, our results suggest that FGFR hyperfunction in post-mitotic neurons at the late embryonic stage result in cortical dysplasia and circuit miswiring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.