This review presents a brief account of the discovery, importance, and use of selenium. Based in the importance of selenoproteins, their mechanism of reaction with the participation of selenium, as a selenol (-SeH) group, are indicated. Since the selenol group is the softest nucleophile center found in life, a brief discussion about the synthesis and possible antioxidant and selenoprotein mimetic effects of the organoselenium compounds that can generate the selenol group is presented.
The antagonism of mercury toxicity by selenium has been well documented. Mercury is a toxic metal, widespread in the environment. The main target organs (kidneys, lungs, or brain) of mercury vary depending on its chemical forms (inorganic or organic). Selenium is a semimetal essential to mammalian life as part of the amino acid selenocysteine, which is required to the synthesis of the selenoproteins. This chapter has the aim of disclosing the role of selenide or hydrogen selenide (Se or HSe) as central metabolite of selenium and as an important antidote of the electrophilic mercury forms (particularly, Hg and MeHg). Emphasis will be centered on the neurotoxicity of electrophile forms of mercury and selenium. The controversial participation of electrophile mercury and selenium forms in the development of some neurodegenerative disease will be briefly presented. The potential pharmacological use of organoseleno compounds (Ebselen and diphenyl diselenide) in the treatment of mercury poisoning will be considered. The central role of thiol (-SH) and selenol (-SeH) groups as the generic targets of electrophile mercury forms and the need of new in silico tools to guide the future biological researches will be commented.
This article presents the preparation and biological activities of new 5'-arylchalcogeno-3-aminothymidine derivatives as antioxidants (inhibition of lipid peroxidation, scavenging of the free radical 2,2-diphenylpicrylhydrazyl and demonstration of a thiol peroxidase-like activity) as well as antitumoral agents against bladder carcinoma 5637. The chalcogeno-aminothymidines presented prominent activity in the tests for both biological properties, showing a direct relation with the chalcogenium atom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.