Abstract:The search for sustainable land use has increased in Brazil due to the important role that agriculture plays in the country. Soil detailed classification is related with texture attribute. How can one discriminate the same soil class with different textures using proximal soil sensing, as to reach surveys, land use planning and increase crop productivity? This study aims to evaluate soil texture using a regional spectral library and its usefulness on classification. We collected 3750 soil samples covering 3 million ha within strong soil class variations in São Paulo State. The spectral analyses of soil samples from topsoil and subsoil were measured in laboratory (400-2500 nm). The potential of a regional soil spectral library was evaluated on the discrimination of soil texture. We considered two types of soil texture systems, one related with soil classification and another with soil managements. The soil line technique was used to assess differentiation between soil textural groups. Soil spectra were summarized by principal component analysis (PCA) to select relevant information on the spectra. Partial least squares regression (PLSR) was used to predict texture. Spectral curves indicated different shapes according to soil texture and discriminated particle size classes from clayey to sandy soils. In the visible region, differences were small because of the organic matter, while the short wave infrared (SWIR) region showed more differences; thus, soil texture variation could be differentiated by quartz. Angulation differences are on a spectral curve from NIR to SWIR. The statistical models predicted clay and sand levels with R 2 = 0.93 and 0.96, respectively. Indeed, we achieved a difference of 1.2% between laboratory and spectroscopy measurement for clay. The spectral information was useful to classify Ferralsols with different texture classification. In addition, the spectra differentiated Lixisols from Ferralsols and Arenosols. This work can help the development of computer programs that allow soil texture classification and subsequent digital soil mapping at detailed scales. In addition, it complies with requirements for sustainable land use and soil management.
The mapping of soil attributes provides support to agricultural planning and land use monitoring, which consequently aids the improvement of soil quality and food production. Landsat 5 Thematic Mapper (TM) images are often used to estimate a given soil attribute (i.e., clay), but have the potential to model many other attributes, providing input for soil mapping applications. In this paper, we aim to evaluate a Bare Soil Composite Image (BSCI) from the state of São Paulo, Brazil, calculated from a multi-temporal dataset, and study its relationship with topsoil properties, such as soil class and geology. The method presented detects bare soil in satellite images in a time series of 16 years, based on Landsat 5 TM observations. The compilation derived a BSCI for the agricultural sites (242,000 hectare area) characterized by very complex geology. Soil properties were analyzed to calibrate prediction models using 740 soil samples (0–20 cm) collected of the area. Partial least squares regression (PLSR) based on the BSCI spectral dataset was performed to quantify soil attributes. The method identified that a single image represents 7 to 20% of bare soil while the compilation of the multi-temporal dataset increases to 53%. Clay content had the best soil attribute prediction estimates (R2 = 0.75, root mean square error (RMSE) = 89.84 g kg−1, and accuracy = 74%). Soil organic matter, cation exchange capacity and sandy soils also achieved moderate predictions. The BSCI demonstrates a strong relationship with legacy geological maps detecting variations in soils. From a single composite image, it was possible to use spectroscopy to evaluate several environmental parameters. This technique could greatly improve soil mapping and consequently aid several applications, such as land use planning, environmental monitoring, and prevention of land degradation, updating legacy surveys and digital soil mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.