Hidradenitis suppurativa (HS) is a pathology characterized by chronic inflammation and skin lesions. The molecular basis of the inflammatory network remains unclear; however, since microRNAs (miRNAs) are involved in the modulation of inflammation, the composition of a micro-transcriptome RNA library using the blood of HS patients was analysed here. The total miRNA expression profiles of miRNAs from HS patients was assayed by real-time qPCR. Here, compared to healthy controls, miR-24-1-5p, miR-146a-5p, miR26a-5p, miR-206, miR338-3p, and miR-338-5p expression was found significantly different in HS. Knowing the significance of the miRNA mechanism in inflammatory and immune progression, we suggest that miRNA profiles found in HS patients can be significant in understanding the pathogenesis modality and establishing efficient biomarkers for HS early diagnosis. In particular, miR-338-5p was closely related to HS invasiveness and production of cytokines and was atypically overexpressed. miR-338-5p may represent a good promise as a non-invasive clinical biomarker for HS.
Mild cognitive impairment (MCI) generally signifies a transitional clinical stage prior to dementia. Cognitive working is a dynamic process where both functional decline and functional improvement are mutual. Patients with amnestic MCI have a high risk to progress toward Alzheimer’s disease. Both amnestic mild cognitive impairment and sporadic Alzheimer’s disease are multifactorial disorders consequential from a multifaceted cross-talk among molecular and biological processes. Non-coding RNAs play an important role in the regulation of gene expression, mainly long non-coding RNAs (lncRNAs), that regulate other RNA transcripts through binding microRNAs. Cross-talk between RNAs, including coding RNAs and non-coding RNAs, produces a significant regulatory network all through the transcriptome. The relationship of genes and non-codingRNAscould improve the knowledge of the genetic factors contributing to the predisposition and pathophysiology of MCI. The objective of this study was to identify the expression patterns and relevant lncRNA-associated miRNA regulatory axes in blood of MCI patients, which includes lncRNA- HAR1A, lncRNA- HAR1B, lncRNA-MEG9, lncRNA-ST7-AS1, and lncRNA-TUNAR. Microarray investigations have demonstrated modifications in the expression of long non-coding RNAs (lncRNA) in blood of patients with MCI compared with control samples. This is the first study to explore lncRNA profiles in Mild Cognitive Impairment blood. Our study proposals RNAs targets involved in molecular pathways connected to the pathogenesis of MCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.