Can molecular dynamics
simulations predict the mechanical behavior of protein complexes?
Can simulations decipher the role of protein domains of unknown function
in large macromolecular complexes? Here, we employ a wide-sampling
computational approach to demonstrate that molecular dynamics simulations,
when carefully performed and combined with single-molecule atomic
force spectroscopy experiments, can predict and explain the behavior
of highly mechanostable protein complexes. As a test case, we studied
a previously unreported homologue from Ruminococcus flavefaciens called X-module-Dockerin (XDoc) bound to its partner Cohesin (Coh).
By performing dozens of short simulation replicas near the rupture
event, and analyzing dynamic network fluctuations, we were able to
generate large simulation statistics and directly compare them with
experiments to uncover the mechanisms involved in mechanical stabilization.
Our single-molecule force spectroscopy experiments show that the XDoc-Coh
homologue complex withstands forces up to 1 nN at loading rates of
105 pN/s. Our simulation results reveal that this remarkable
mechanical stability is achieved by a protein architecture that directs
molecular deformation along paths that run perpendicular to the pulling
axis. The X-module was found to play a crucial role in shielding the
adjacent protein complex from mechanical rupture. These mechanisms
of protein mechanical stabilization have potential applications in
biotechnology for the development of systems exhibiting shear enhanced
adhesion or tunable mechanics.
Microfluidics is an emerging technology that can be employed as a powerful tool for designing lipid nano-microsized structures for biological applications. Those lipid structures can be used as carrying vehicles for a wide range of drugs and genetic materials. Microfluidic technology also allows the design of sustainable processes with less financial demand, while it can be scaled up using parallelization to increase production. From this perspective, this article reviews the recent advances in the synthesis of lipid-based nanostructures through microfluidics (liposomes, lipoplexes, lipid nanoparticles, core-shell nanoparticles, and biomimetic nanovesicles). Besides that, this review describes the recent microfluidic approaches to produce lipid micro-sized structures as giant unilamellar vesicles. New strategies are also described for the controlled release of the lipid payloads using microgels and droplet-based microfluidics. To address the importance of microfluidics for lipid-nanoparticle screening, an overview of how microfluidic systems can be used to mimic the cellular environment is also presented. Future trends and perspectives in designing novel nano and micro scales are also discussed herein.
The present work, involves the simulation of the transport of a vitamin C derivative, Ascorbyl Tetraisopalmitate (ATI), through human skin by molecular dynamics. Percutaneous absorption of the ATI molecule through the infundibulum, an important route of absorption into the hair follicle of the human skin, has been modeled and compared with the stratum corneum membrane. The comparative study was done using molecular dynamics with Martini force field. In infundibulum, a single ATI molecule require more time to penetrate, and the data obtained suggested that a high concentration of ATI molecule accelerated the process of penetration. In conclusion, the ATI molecule was found to have more affinity towards the stratum corneum as compared with the infundibulum, and it followed a straight pathway to penetrate (until 600ns of simulation). In the infundibulum, it showed less affinity, more mobility and followed a lateral pathway. Thus, this work contributes to a better understanding of the different molecular interactions during percutaneous absorption of active molecules in these two different types of biological membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.