Adipogenesis, osteogenesis and chondrogenesis of human mesenchymal stem/stromal cells (MSC) are complex and highly regulated processes. Over the years, several studies have focused on understanding the mechanisms involved in the MSC commitment to the osteogenic, adipogenic and/or chondrogenic phenotypes. High-throughput methodologies have been used to investigate the gene expression profile during differentiation. Association of data analysis of mRNAs, microRNAs, circular RNAs and long non-coding RNAs, obtained at different time points over these processes, are important to depict the complexity of differentiation. This review will discuss the results that were highlighted in transcriptome analyses of MSC undergoing adipogenic, osteogenic and chondrogenic differentiation. The focus is to shed light on key molecules, main signaling pathways and biological processes related to different time points of adipogenesis, osteogenesis and chondrogenesis.
Adult stem cells have beneficial effects when exposed to damaged tissue due, at least in part, to their paracrine activity, which includes soluble factors and extracellular vesicles (EVs). Given the multiplicity of signals carried by these vesicles through the horizontal transfer of functional molecules, human mesenchymal stem cell (hMSCs) and CD133 cell-derived EVs have been tested in various disease models and shown to recover damaged tissues. In this study, we profiled the protein content of EVs derived from expanded human CD133 cells and bone marrow-derived hMSCs with the intention of better understanding the functions performed by these vesicles/cells and delineating the most appropriate use of each EV in future therapeutic procedures. Using LC-MS/MS analysis, we identified 623 proteins for expanded CD133-EVs and 797 proteins for hMSCs-EVs. Although the EVs from both origins were qualitatively similar, when protein abundance was considered, hMSCs-EVs and CD133-EVs were different. Gene Ontology (GO) enrichment analysis in CD133-EVs revealed proteins involved in a variety of angiogenesis-related functions as well proteins related to the cytoskeleton and highly implicated in cell motility and cellular activation. In contrast, when overrepresented proteins in hMSCs-EVs were analyzed, a GO cluster of immune response-related genes involved with immune response-regulating factors acting on phagocytosis and innate immunity was identified. Together our data demonstrate that from the point of view of protein content, expanded CD133-EVs and hMSCs-EVs are in part similar but also sufficiently different to reflect the main beneficial paracrine effects widely reported in pre-clinical studies using expanded CD133 cells and/or hBM-MSCs.
The adipogenic process is characterized by the expression of adipocyte differentiation markers that lead to changes in cell metabolism and to the accumulation of lipid droplets. Moreover, during early adipogenesis, cells undergo a strong downregulation of translational activity with a decrease in cell size, proliferation and migration. In the present study, we identified that after 24 hours of adipogenic induction, human adipose tissue-derived stem cells (hASCs) undergo a G1-cell cycle arrest consistent with reduced proliferation, and this effect was correlated with a shift in polysome profile with an enrichment of the monosomal fraction and a reduction of the polysomal fraction. Polysome profiling analysis also revealed that this change in the monosomal/polysomal ratio was related to a strong downregulation of cell cycle and proliferation genes, such as cyclins and cyclin-dependent kinases (CDKs). Comparing total and polysome-associated mRNA sequencing, we also observed that this downregulation was mostly due to a reduction of cell cycle and proliferation transcripts via control of total mRNA abundance, rather than by translational control.
Commitment of adult stem cells involves the activation of specific gene networks regulated from transcription to protein synthesis. Here, we used ribosome profiling to identify mRNAs regulated at the translational level, through both differential association to polysomes and modulation of their translational rates. We observed that translational regulation during the differentiation of human adipose-derived stromal cells (hASCs, also known as adipose-derived mesenchymal stem cells), a subset of which are stem cells, to adipocytes was a major regulatory event. hASCs showed a significant reduction of whole protein synthesis after adipogenic induction and a downregulation of the expression and translational efficiency of ribosomal proteins. Additionally, focal adhesion and cytoskeletal proteins were downregulated at the translational level. This negative regulation of the essential biological functions of hASCs resulted in a reduction in cell size and the potential of hASCs to migrate. We analyzed whether the inactivation of key translation initiation factors was involved in this observed major repression of translation. We showed that there was an increase in the hypo phosphorylated forms of 4E-BP1, a negative regulator of translation, during early adipogenesis. Our results showed that extensive translational regulation occurred during the early stage of the adipogenic differentiation of hASCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.