Several works in the literature emphasized data mining as efficient tools to identify factors related to retention and dropout in higher education. However, most of these works do not discuss if (or how) such factors may effectively contribute to decrease such rates. This article presents a data mining approach conceived to identify students at retention risk in a course of Intro to Computer Programming as well as guide preventive interventions to help such students to overcome this situation. Our results indicated an averaged predictive performance superior to 80% in both accuracy and F1 when identifying factors related to the retention. Moreover, during the two years of the project execution, the annual success rates in the course were the highest in comparison to the last five years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.