L-arginine supplementation has been related to increased maximum strength and improvement of hemodynamic parameters in several diseases. The aim of our study was to evaluate the effect of L-arginine supplementation and resistance training on muscle mass, hemodynamic function and DNA damage in healthy rats subjected to a low-arginine concentration diet. Twenty three Wistar rats (290-320g) were divided into 4 groups: Sedentary (SED-Arg, n = 6), Sedentary+Arg (SED+Arg, n = 6), Resistance Training (RT-Arg, n = 5), Resistance Training+Arg (RT+Arg, n = 6). Trained animals performed resistance training protocol in a squat apparatus adapted for rats (4 sets of 10–12 repetitions, 90s of interval, 4x/week, 65–75% of One Maximum Repetition, for 8 weeks). Comet assay was performed to measure DNA damage in leukocytes. The resistance training induced higher muscle mass in trained groups. The L-arginine supplementation increased both gastrocnemius and left ventricle to body mass ratio and increased left ventricle contractility without changing hemodynamic variables. The SED+Arg group showed higher concentration of extracellular heat shock protein 72 (eHSP72) and total testosterone, as well as lower uric acid concentration in blood versus SED-Arg group. The administration of isolated L-arginine supplementation and its association with resistance training promoted less damage in leukocytes DNA. In conclusion, the L-arginine supplementation showed synergistic effect with resistance training regarding leukocyte genomic stability in a low-L-arginine diet scenario.
Aim: To evaluate the impact of exercise training plasma on in vitro prostate cancer cell viability and proliferation.Methods: PC3 prostate cancer cells were incubated with plasma obtained from young men with high and low physical fitness (PF) (high PF, n = 5; low PF, n = 5) and with the plasma collected from institutionalized older adults (n = 8) before and after multimodal exercise training. Cell viability and proliferation, mitochondria membrane polarization, reactive oxygen species (ROS) generation, and apoptosis were evaluated after the cell treatment with plasma. Systemic cytokines were evaluated in the plasma of institutionalized older adults submitted to an exercise training protocol.Results: Plasma from high-PF men lowers both cell viability and proliferation after the incubation time. PC3 cells also presented lower cell viability and diminished rates of cell proliferation after the incubation with post-training plasma samples of the older adults. The incubation of PC3 cells with post-training plasma of older adults depolarized the mitochondrial membrane potential and increased mitochondrial reactive oxygen species production. Post-training plasma did not change apoptosis or necrosis rates in the PC3 cell line. Multimodal exercise training increased the plasma levels of IL-2, IL-10, IFN-α, and FGF-1 and decreased TNF-α concentrations in institutionalized older adults.Conclusion: Adaptations in blood factors of institutionalized older adults may alter cell viability and proliferation by targeting mitochondrial ROS in a prostate cancer cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.