Riffle beetle community structure is influenced by the preservation condition of stream riparian vegetation. Though, the width of riparian vegetation required to ensure conservation of stream insect communities is still controversial. Effects of alterations in riparian vegetation widths on stream insect community structure can be overcame by other environmental variables, like substrate type, hindering accurate assessments. We tested the effects of different riparian vegetation widths (>40, 30–15, 15–5 and <5 m) along with different substrate types (inorganic and organic) on riffle beetle community structure in southern Brazilian 4th‐ to 5th‐order streams. Riparian buffer widths and substrate types influenced riffle beetle community structure, but no interaction between them was observed. Reduced riparian vegetation widths downstream were associated with changes in riffle beetle dominant genera (Macrelmis predominated only in streams with narrowest riparian widths). Additionally, communities in organic substrates had lower equitability and different dominant genera (Hexacylloepus and Heterelmis) than inorganic ones. Our results showed that reductions in riparian vegetation were associated with water pollution and changes in riffle beetle community structure, suggesting that buffer strips narrower than 5 m are not adequate to maintain environmental integrity of southern Brazilian streams. These results have special importance for the conservation of stream insects in Brazil, as reductions up to less than 5 m in stream banks of small properties are allowed by the new Brazilian Forest Code, independently of stream order.
., SPIES, M.R., PIRES, M.M. Diversity and distribution of riffle beetle assemblages (Coleoptera, Elmidae) in montane rivers of Southern Brazil. Biota http://dx.doi.org/10.1590/1676-060320140615183046Abstract: The diversity and spatio-temporal distribution of Elmidae (Coleoptera) assemblages in montane rivers and streams of southernmost Brazil (Rio Grande do Sul state) were studied. Six genera were found, represented mostly by larval specimens. Austrolimnius and Macrelmis are new occurrences in the region. Assemblages' genera composition and dominance were related to the presence of the macrophyte Podostemum. Also, water temperature and stream depth and velocity were the most important drivers related to the assemblages' distribution. Richness and abundance were positively related to high water velocity and negatively to stream depth. Temporal patterns were detected especially in assemblage abundance, yet a slight pattern in richness was also observed. The seasonal structure was related to warm temperatures, but temporal distribution of Elmidae assemblages appears to be related to the dominant genera life cycles. The studied area shows an overall Elmidae richness similar to that found in some tropical areas and the role of mountainous environments in sustaining high rates of regional diversity in the Neotropics is stated. Keywords: aquatic insects, streams, Neotropical region.
AIMS: In this study, the diversity of Ephemeroptera, Plecoptera, Trichoptera and Coleoptera communities was surveyed in the Toropi River basin, a watershed localized in a slope region, in southernmost Brazil. The influence of some local abiotic factors on the most common genera was also analyzed. METHODS: Samplings were conducted at 40 sites in 1st-4th order streams, along a short elevation gradient (70-500 m), with a Surber sampler. Water physico-chemical factors, as well as substrate type, were obtained at each site. RESULTS: At all, 5,320 specimens were collected, belonging to 18 families and 52 genera. The caddisflies Austrotinodes and Celaenotrichia, and an undescribed Elmidae, Genus M, are new records for the region. The caddisfly Smicridea was the most frequent genus in the study area. The mayflies Camelobaetidius, Paracloeodes and Americabaetis were influenced by stream order. Smicridea was related to air temperature, while the mayfly Thraulodes was influenced by high levels of electrical conductivity. CONCLUSIONS: The high diversity found in the study area, compared to other Brazilian regions, reflects the environmental heterogeneity in the region. These data show that hydrographic basins in slope areas from extreme Southern Brazil sustain high levels of diversity of aquatic insect communities.
Deforestation affects freshwater assemblages since aquatic organisms are dependent on the structure of the riparian vegetation. To investigate the responses of riffle beetles (Elmidae) to deforestation, this study assessed the structure of riffle beetle assemblages found in streams running through a large and well-preserved semi-deciduous Atlantic Forest remnant in Southern Brazil and in nearby deforested areas. Additionally, the effects of different substrate types (litter and stone) on the assemblages were assessed. Riffle beetle assemblages showed a remarkably distinct structure between forested and deforested areas. Lower abundance occurred in deforested streams. Indicator genera of forested streams were detected (e.g.,Macrelmis and Microcylloepus), while a generalist genus (Heterelmis) predominated in deforested streams. Substrate type did not affect the composition of riffle beetle genera, although higher abundance was found in litter. Our results are likely associated with changes in the vegetation type and levels and quality of allochthonous material input between forested (native and higher levels) and deforested (exotic and lower levels) streams, which are directly linked to the feeding habits of riffle beetles. Thus, our study reveals an interesting potential of riffle beetles as indicators of stream ecological integrity in semi-deciduous areas of the Atlantic Forest biome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.