In the present study we developed a chemically induced experimental model for gestational hypermethioninemia in rats and evaluated in the offspring the activities of Na(+),K(+)-ATPase and Mg(2+)-ATPase, as well as oxidative stress parameters, namely sulfhydryl content, thiobarbituric acid-reactive substances and the antioxidant enzymes superoxide dismutase and catalase in encephalon. Serum and encephalon levels of methionine and total homocysteine were also evaluated in mother rats and in the offspring. Pregnant Wistar rats received two daily subcutaneous injections of methionine throughout the gestational period (21 days). During the treatment, a group of pregnant rats received dose 1 (1.34 μmol methionine/g body weight) and the other one received dose 2 (2.68 μmol methionine/g body weight). Control group received saline. After the rats give birth, a first group of pups was killed at the 7th day of life and the second group at the 21th day of life for removal of serum and encephalon. Mother rats were killed at the 21th day postpartum for removal of serum and encephalon. Both doses 1 and 2 increased methionine levels in encephalon of the mother rats and dose 2 increased methionine levels in encephalon of the offspring. Maternal hypermethioninemia also decreased the activities of Na(+),K(+)-ATPase, Mg(2+)-ATPase and catalase, as well as reduced total sulfhydryl content in the encephalon of the pups. This chemical model seems to be appropriate for studies aiming to investigate the effect of maternal hypermethioninemia on the developing brain during gestation in order to clarify possible neurochemical changes in the offspring.
Hypermethioninemia is a condition defined as elevated plasma methionine levels and may be a consequence of different conditions that include non-genetic and genetic causes. In severe cases, hypermethioninemia may lead to development of neurological and hepatic impairments, but mechanisms are still not well elucidated. Therefore, this review aims to reunite the knowledge acquired about the methionine-induced brain and liver toxicity focusing on the results obtained by studies from patients, in vitro experiments, and in vivo animal models. In general, some studies have shown that methionine decreases Na,K-ATPase activity, induces oxidative stress, increases acetylcholinesterase activity, and leads to dendritic spine downregulation in brain. Concerning to liver, hypermethioninemia seems to provoke changes in cell morphology, lipid accumulation, oxidative stress, inflammation, and ATP depletion. It is possible to infer that oxidative damage is one of the most important mechanisms responsible for methionine toxicity, since different studies showed that this amino acid induces oxidative stress in brain and liver tissues. Besides, reactive oxygen species may mediate other alterations induced by methionine, such as the reduction in brain Na,K-ATPase activity, and liver inflammation.
In the present work, we evaluated the effect of gestational hypermethioninemia on locomotor activity, anxiety, memory, and exploratory behavior of rat offspring through the following behavior tests: open field, object recognition, and inhibitory avoidance. Histological analysis was also done in the brain tissue of pups. Wistar female rats received methionine (2.68 μmol/g body weight) by subcutaneous injections during pregnancy. Control rats received saline. Histological analyses were made in brain tissue from 21 and 30 days of age pups. Another group was left to recover until the 30th day of life to perform behavior tests. Results from open field task showed that pups exposed to methionine during intrauterine development spent more time in the center of the arena. In the object recognition memory task, we observed that methionine administration during pregnancy reduced total exploration time of rat offspring during training session. The test session showed that methionine reduced the recognition index. Regarding to inhibitory avoidance task, the decrease in the step-down latency at 1 and 24 h after training demonstrated that maternal hypermethioninemia impaired short-term and long-term memories of rat offspring. Electron microscopy revealed alterations in the ultrastructure of neurons at 21 and 30 days of age. Our findings suggest that the cell morphological changes caused by maternal hypermethioninemia may be, at least partially, associated to the memory deficit of rat offspring.
In the current study, we verified the effects of maternal hypermethioninemia on the number of neurons, apoptosis, nerve growth factor, and brain-derived neurotrophic factor levels, energy metabolism parameters (succinate dehydrogenase, complex II, and cytochrome c oxidase), expression and immunocontent of Na,K-ATPase, edema formation, inflammatory markers (tumor necrosis factor-alpha and interleukin-6), and mitochondrial hydrogen peroxide levels in the encephalon from the offspring. Pregnant Wistar rats were divided into two groups: the first one received saline (control) and the second group received 2.68 μmol methionine/g body weight by subcutaneous injections twice a day during gestation (approximately 21 days). After parturition, pups were killed at the 21st day of life for removal of encephalon. Neuronal staining (anti-NeuN) revealed a reduction in number of neurons, which was associated to decreased nerve growth factor and brain-derived neurotrophic factor levels. Maternal hypermethioninemia also reduced succinate dehydrogenase and complex II activities and increased expression and immunocontent of Na,K-ATPase alpha subunits. These results indicate that maternal hypermethioninemia may be a predisposing factor for damage to the brain during the intrauterine life.
Na(+),K(+)-ATPase is a membrane protein which plays a key role in the maintenance of ion homeostasis that is necessary to neuronal excitability, secondary transport and neurotransmitter uptake. Mild hyperhomocysteinemia leads to several clinical manifestations and particularly cerebral diseases; however, little is known about the mechanisms of homocysteine on cerebral Na(+),K(+)-ATPase. In the present study, we investigated the effect of mild hyperhomocysteinemia on the activity, the immunocontent of catalytic subunits (α1, α2, and α3) and the gene expression of this enzyme. We used the experimental model of mild hyperhomocysteinemia that was induced by homocysteine administration (0.03 μmol/g of body weight) twice a day, from the 30th to the 60th postpartum day. Controls received saline in the same volumes. Results showed that mild hyperhomocysteinemia significantly decreased the activity and the immunocontent of the α 1 and α 2 subunits of the Na(+),K(+)-ATPase in cerebral cortex and hippocampus of adult rats. On the other hand, we did not observe any change in levels of Na(+),K(+)-ATPase mRNA transcripts in such cerebral structures of rats after chronic exposure to homocysteine. The present findings support that the homocysteine modulates the Na(+),K(+)-ATPase and this could be associated, at least in part, with the risk to the development of cerebral diseases in individuals with mild hyperhomocysteinemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.