The objective of this study was to evaluate the regimes of temperature and rainfall in Belém, PA, Brazil, with emphasis on the start of the dry season in order to provide planning support for agricultural activities during years of climatic anomolies in the region. An initial analysis was done of the metropolitan region of Belém comparing it to the typology of Amazonian climates using rainfall data from 1971 to 2014 and creating an annual index of precipitation anomolies (AIPA). The temperature regime was described using a homogeneous rainfall dataset from 1990 to 2014. The hydrological balance was estimated for the period 1990 to 2014 using an index of capacity of soil water availability equal to 100 mm to identify the months with deficit or excess of soil water. Box plots were analyzed by decade and maximums of daily rainfall for the month of August were used. The Pareto principle was applied to 9 indices to assess the effects of rainfall quantity in relation to anomalous years. Although the metropolitan region of Belém is for the most part categorized by the Af2 climate type it is possible to have prolonged soil water deficit from August through November, an effect that is intensified by the El Niño phenomenon. Furthermore, in the month of August there were years with extreme rainfall events, such as that of August 7th, 2010 where 72.4 mm of rainfall occurred representing 53% of total monthly rainfall. This event can be explained by the intense waves of humidity coming from the East that amplified local rainfall. During the last two decades extreme daily rainfall events have become more frequent, and rainfall reductions in the region have tended to intensify in areas that historically receive less rainfall such as the transition between the Amazonian and Savannah biomes. Therefore, in La Niña or El Niño years, the month of August can be considered to be the signal for meso-and large-scale atmospheric mechanisms that influence precipitation regimes and that can have a negative effect of the region's agricultural productivity.
A castanha do Brasil (Bertholletia excelsa) e portuguesa (Castanea sativa Mill.) são culturas cultivadas no Brasil e em Portugal, respectivamente, e suas amêndoas consumidas principalmente in natura, as quais são ricas em minerais, vitaminas e nutrientes. Dessa forma, objetivou-se avaliar e comparar as características físicas e físico-químicas das amêndoas da castanha do Brasil e portuguesa. Foram analisados 6 kg de castanhas de cada tipo, através das suas características físicas como altura, diâmetro maior e menor, e características físico-químicas como pH, acidez total titulável, cinzas, umidade, proteína e lipídeos. As análises da castanha do Brasil foram realizadas no Laboratório de Tecnologia de Alimentos da Universidade Federal Rural da Amazônia. Já as análises da castanha portuguesa foram realizadas no Laboratório de Química da Universidade do Porto. Aplicou-se software Microsoft Excel, para análise de média e desvio padrão. Logo após foi realizado o Teste t de Student para comparação entre as médias das castanhas brasileiras e portuguesas, e em seguida realizou-se uma análise multivariada (PCA e HCA), todos através do software Minitab 16.0. Através dos resultados foi possível confirmar a diferenciação das castanhas em todos os parâmetros analisados. Verifica-se que a castanha do Brasil é rica em proteínas (14,58%) e lipídeos (64,07%), e a castanha portuguesa tem alta concentração de umidade (50%), baixa concentração de proteína (7,10%), porém possuindo alto valor biológico e, segundo a literatura, é rica em fibra alimentar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.