Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides -antisense DNA (ASO) and RNA interference (RNAi)followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, αtocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.
Nucleic acid sequences containing guanine tracts are able to adopt noncanonical four-stranded nucleic acid structures called G-quadruplexes (G4s). These structures are based on the stacking of two or more G-tetrads; each tetrad is a planar association of four guanines held together by eight hydrogen bonds. In this study, we analyzed a conserved G-rich region from HIV-1 promoter that is known to regulate the transcription of the HIV-1 provirus. Strikingly, our analysis of an alignment of 1684 HIV-1 sequences from this region showed a high conservation of the ability to form G4 structures despite a lower conservation of the nucleotide primary sequence. Using NMR spectroscopy, we determined the G4 topology adopted by a DNA sequence from this region (HIV-PRO1: 5' TGGCCTGGGCGGGACTGGG 3'). This DNA fragment formed a stable two G-tetrad antiparallel G4 with an additional Watson-Crick CG base pair. This hybrid structure may be critical for HIV-1 gene expression and is potentially a novel target for anti-HIV-1 drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.