The inflammation and infection of bone include a wide range of processes that can result in a reduction of function or in the complete inability of patients. Apart from the inflammation, infection is sustained by pyogenic microorganisms and results mostly in massive destruction of bones and joints. The treatment of osteomyelitis requires long and expensive medical therapies and, sometimes, surgical resection for debridement of necrotic bone or to consolidate or substitute the compromised bones and joints. Radiographs and bone cultures are the mainstays for the diagnosis but often are useless in the diagnosis of activity or relapse of infection in the lengthy management of these patients. Imaging with radiopharmaceuticals, computed tomography and magnetic resonance are also used to study secondary and chronic infections and their diffusion to soft or deep tissues. The diagnosis is quite easy in acute osteomyelitis of long bones when the structure of bone is still intact. But most cases of osteomyelitis are subacute or chronic at the onset or become chronic during their evolution because of the frequent resistance to antibiotics. In chronic osteomyelitis the structure of bones is altered by fractures, surgical interventions and as a result of bone reabsorption produced by the infection. Metallic implants and prostheses produce artefacts both in computed tomography and magnetic resonance images, and radionuclide studies should be essential in these cases. Vertebral osteomyelitis is a specific entity that can be correctly diagnosed by computed tomography or magnetic resonance imaging at the onset of symptoms but only with radionuclide imaging is it possible to assess the activity of the disease after surgical stabilization or medical therapy. The lack of comparative studies showing the accuracy of each radiopharmaceutical for the study of bone infection does not allow the best nuclear medicine techniques to be chosen in an evidence-based manner. To this end we performed a meta-analysis of peer reviewed articles published between 1984 and 2004 describing the use of nuclear medicine imaging for the study of the most frequent causes of bone infections, including prosthetic joint, peripheric post-traumatic bone infections, vertebral and sternal infections. Guidelines for the choice of the optimal radiopharmaceuticals to be used in each clinical condition and for different aims is provided.
Aim The diagnosis, severity and extent of a sterile inflammation or a septic infection could be challenging since there is not one single test able to achieve an accurate diagnosis. The clinical use of 18F-fluorodeoxyglucose ([ 18 F]FDG) positron emission tomography/computed tomography (PET/CT) imaging in the assessment of inflammation and infection is increasing worldwide. The purpose of this paper is to achieve an Italian consensus document on [ 18 F]FDG PET/CT or PET/MRI in inflammatory and infectious diseases, such as osteomyelitis (OM), prosthetic joint infections (PJI), infective endocarditis (IE), prosthetic valve endocarditis (PVE), cardiac implantable electronic device infections (CIEDI), systemic and cardiac sarcoidosis (SS/CS), diabetic foot (DF), fungal infections (FI), tuberculosis (TBC), fever and inflammation of unknown origin (FUO/IUO), pediatric infections (PI), inflammatory bowel diseases (IBD), spine infections (SI), vascular graft infections (VGI), large vessel vasculitis (LVV), retroperitoneal fibrosis (RF) and COVID-19 infections. Methods In September 2020, the inflammatory and infectious diseases focus group (IIFG) of the Italian Association of Nuclear Medicine (AIMN) proposed to realize a procedural paper about the clinical applications of [ 18 F]FDG PET/CT or PET/MRI in inflammatory and infectious diseases. The project was carried out thanks to the collaboration of 13 Italian nuclear medicine centers, with a consolidate experience in this field. With the endorsement of AIMN, IIFG contacted each center, and the pediatric diseases focus group (PDFC). IIFG provided for each team involved, a draft with essential information regarding the execution of [ 18 F]FDG PET/CT or PET/MRI scan (i.e., indications, patient preparation, standard or specific acquisition modalities, interpretation criteria, reporting methods, pitfalls and artifacts), by limiting the literature research to the last 20 years. Moreover, some clinical cases were required from each center, to underline the teaching points. Time for the collection of each report was from October to December 2020. Results Overall, we summarized 291 scientific papers and guidelines published between 1998 and 2021. Papers were divided in several sub-topics and summarized in the following paragraphs: clinical indications, image interpretation criteria, future perspectivess and new trends (for each single disease), while patient preparation, image acquisition, possible pitfalls and
Chromosome translocations are gross chromosomal rearrangements that have often been associated with cancer development in mammalian cells. The feasibility of drastically reshaping the genome with a single translocation event also gives this molecular event a powerful capacity to drive evolution. Despite these implications and their role in genome instability, very little is known about the molecular mechanisms that promote and accompany these events. Here, at the molecular level, we describe 10 morphologically and physiologically different translocants ensuing from the induction of the same bridgeinduced translocation (BIT) event in the budding yeast Saccharomyces cerevisiae. We have demonstrated that, despite their common origin from the integration of the same linear DNA construct, all 10 translocation mutant strains have different phenotypes and the ability to sporulate and regulate gene expression and morphology. We also provide insights into how heterogeneous phenotypic variations originate from the same initial genomic event. Here we show eight different ways in which yeast cells have dealt with a single initial event inducing translocation. Our results are in agreement with the formation of complex rearrangements and abnormal karyotypes described in many leukemia patients, thus confirming the modellistic value of the yeast BIT system for mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.