BackgroundConvergent evolution has been a challenging topic for decades, being cetaceans, pinnipeds and sirenians textbook examples of three independent origins of equivalent phenotypes. These mammalian lineages acquired similar anatomical features correlated to an aquatic life, and remarkably differ from their terrestrial counterparts. Whether their molecular evolutionary history also involved similar genetic mechanisms underlying such morphological convergence nevertheless remained unknown. To test for the existence of convergent molecular signatures, we studied the molecular evolution of Hox genes in these three aquatic mammalian lineages, comparing their patterns to terrestrial mammals. Hox genes are transcription factors that play a pivotal role in specifying embryonic regional identity of nearly any bilateral animal, and are recognized major agents for diversification of body plans.ResultsWe detected few signatures of positive selection on Hox genes across the three aquatic mammalian lineages and verified that purifying selection prevails in these sequences, as expected for pleiotropic genes. Genes found as being positively selected differ across the aquatic mammalian lineages, but we identified a substantial overlap of their developmental functions. Such pattern likely resides on the duplication history of Hox genes, which probably provided different possible evolutionary routes for achieving the same phenotypic solution.ConclusionsOur results indicate that convergence occurred at a functional level of Hox genes along three independent origins of aquatic mammals. This conclusion reinforces the idea that different changes in developmental genes may lead to similar phenotypes, probably due to the redundancy provided by the participation of Hox paralogous genes in several developmental functions.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0682-4) contains supplementary material, which is available to authorized users.
ABSTRACT. The structure and evolution of the SEC1 gene were examined for the first time in New World primates of the genera Alouatta, Aotus, Ateles, Brachyteles, Callicebus, Callithrix, Cebus, Chiropotes, Lagothrix, Leontopithecus, Pithecia, Saguinus, and Saimiri. This gene has a high CG content (63.8%) and an estimated heterogeneous size ranging from 795 (Callithrix) to 1041 bp (Pithecia), due to numerous indel events. Similar to other fucosyltransferases, three conserved regions are shared by these primates, except for the callitrichines, Aotus and Pithecia, in which indel events resulted in premature stop codons that are related to the production of a supposedly non-functional protein. Phylogenetic analysis of the SEC1 gene, transition/transversion rates, and nucleotide sequence alignment support the hypothesis that primate SEC1 evolved by divergent evolution, and that the lack of activity in some lineages occurred independently at least twice in New World primates, once in the Aotus-Cebus-Callitrichinae group and again in Pithecia. Likelihood-based inference of ancestral states for the activity of SEC1 leads us to suppose that inactivation of SEC1 in the Callitrichinae was a result of a more complex series of events than in Pithecia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.