This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall
Abstract. The Green Ocean Amazon experiment – GoAmazon 2014–2015 – explored the interactions between natural biogenic forest emissions from central Amazonia and urban air pollution from Manaus. Previous GoAmazon 2014–2015 studies showed that nitrogen oxide (NOx = NO + NO2) and sulfur oxide (SOx) emissions from Manaus strongly interact with biogenic volatile organic compounds (BVOCs), affecting secondary organic aerosol (SOA) formation. In previous studies, ground-based and aircraft measurements provided evidence of SOA formation and strong changes in aerosol composition and properties. Aerosol optical properties also evolve, and their impacts on the Amazonian ecosystem can be significant. As particles age, some processes, such as SOA production, black carbon (BC) deposition, particle growth and the BC lensing effect change the aerosol optical properties, affecting the solar radiation flux at the surface. This study analyzes data and models SOA formation using the Weather Research and Forecasting with Chemistry (WRF-Chem) model to assess the spatial variability in aerosol optical properties as the Manaus plumes interact with the natural atmosphere. The following aerosol optical properties are investigated: single scattering albedo (SSA), asymmetry parameter (gaer), absorption Ångström exponent (AAE) and scattering Ångström exponent (SAE). These simulations were validated using ground-based measurements at three experimental sites, namely the Amazon Tall Tower Observatory – ATTO (T0a), downtown Manaus (T1), Tiwa Hotel (T2) and Manacapuru (T3), as well as the U.S. Department of Energy (DOE) Gulfstream 1 (G-1) aircraft flights. WRF-Chem simulations were performed over 7 d during March 2014. Results show a mean biogenic SOA (BSOA) mass enrichment of 512 % at the T1 site, 450 % in regions downwind of Manaus, such as the T3 site, and 850 % in areas north of the T3 site in simulations with anthropogenic emissions. The SOA formation is rather fast, with about 80 % of the SOA mass produced in 3–4 h. Comparing the plume from simulations with and without anthropogenic emissions, SSA shows a downwind reduction of approximately 10 %, 11 % and 6 % at the T1, T2 and T3 sites, respectively. Other regions, such as those further downwind of the T3 site, are also affected. The gaer values increased from 0.62 to 0.74 at the T1 site and from 0.67 to 0.72 at the T3 site when anthropogenic emissions are active. During the Manaus plume-aging process, a plume tracking analysis shows an increase in SSA from 0.91 close to Manaus to 0.98 160 km downwind of Manaus as a result of SOA production and BC deposition.
The Amazon rainforest suffers increasing pressure from anthropogenic activities. A key aspect not fully understood is how anthropogenic atmospheric emissions within the basin interact with biogenic emissions and impact the forest’s atmosphere and biosphere. We combine a high-resolution atmospheric chemical transport model with an improved emissions inventory and in-situ measurements to investigate a surprisingly high concentration of ozone (O3) and secondary organic aerosol (SOA) 150–200 km downwind of Manaus city in an otherwise pristine forested region. We show that atmospheric dynamics and photochemistry determine a gross production of secondary pollutants seen in the simulation. After sunrise, the erosion of the nocturnal boundary layer mixes natural forest emissions, rich in biogenic volatile organic compounds, with a lofted pollution layer transported overnight, rich in nitrogen oxides and formaldehyde. As a result, O3 and SOA concentrations greater than ∼47 ppbv and 1.8 μg m–3, respectively, were found, with maximum concentrations occurring at 2 pm LT, 150–200 km downwind of Manaus city. These high concentrations affect a large primary forested area of about 11,250 km2. These oxidative areas are under a NOx-limited regime so that changes in NOx emissions from Manaus have a significant impact on O3 and SOA production.
pelo cuidado, tempo e esforço despendidos na orientação e, em especial, pelo trabalho em defesa da ciência de qualidade que certamente me influenciou a continuar na vida científica apesar do período difícil. À Prof. Samara Carbone pelo incansável apoio em longas reuniões durante estes dois anos de mestrado que me ajudaram muito a desenvolver e interpretar o estudo de espectrometria de massa.À equipe do LFA que trabalhou arduamente para idealizar, implantar e operar os equipamentos do experimento GoAmazon, dentre eles
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.