We present the epitaxial growth of Ge and Ge 0.94 Sn 0.06 layers with 1.4% and 0.4% tensile strain, respectively, by reduced pressure chemical vapor deposition on relaxed GeSn buffers and the formation of high-k/metal gate stacks thereon. Annealing experiments reveal that process temperatures are limited to 350 °C to avoid Sn diffusion. Particular emphasis is placed on the electrical characterization of various high-k dielectrics, as 5 nm Al 2 O 3 , 5 nm HfO 2 , or 1 nmAl 2 O 3 /4 nm HfO 2 , on strained Ge and strained Ge 0.94 Sn 0.06 . Experimental capacitance− voltage characteristics are presented and the effect of the small bandgap, like strong response of minority carriers at applied field, are discussed via simulations.
In this work, the electrical properties of p-GeSn/n-Ge diodes are investigated in order to assess the impact of defects at the interface between Ge and GeSn using temperature-dependent current-voltage and capacitance-voltage measurements. These structures are made from GeSn epitaxial layers grown by CVD on Ge with in-situ doping by Boron. As results, an average ideality factor of 1.2 has been determined and an activation energy comprised between 0.28 eV and 0.30 eV has been extracted from the temperature dependence of the reverse-bias current. Based on the comparison with numerical results obtained from device simulations, we explain this activation energy by the presence of traps located near the GeSn/Ge interface.
In this work, we investigated the electrical characteristics of p-GeSn/p-Ge and p-GeSn/n-Ge structures obtained by simulation of the basic semiconductor equations. We developed a numerical formalism based on a drift-diffusion model including a trap level and applied it to typical GeSn-based heterostructures by focusing on the electrical response under small-signal alternating current regime. The results demonstrate that our method provides an access to both microscopic and macroscopic properties, and thereon, to a physical interpretation of the electrical characteristics of GeSn-based structures by linking measurable quantities to micro-scale variations in the structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.