The joint inversion of seismic data for elastic and petrophysical properties is an inverse problem with a nonunique solution. There are several factors that impact the accuracy of the results, such as the statistical rock-physics relations and observation errors. We have developed a general methodology to incorporate a linearized rock-physics model in a multivariate multimodal prior distribution for Bayesian seismic linearized inversion. The prior distribution is used to define a mixture model for elastic and petrophysical properties and introduce physics-based correlations between the properties. Using the rock-physics prior model and a convolutional seismic forward model in the Bayesian inversion framework, we obtain an analytical expression of the spatially independent conditional distributions to be used as a proposal distribution in a Gibbs sampling algorithm. We then combine the sampling algorithm with geostatistical simulation methods to compute the spatially correlated posterior distribution of the model parameters. We apply our method to a real angle-stack seismic data set to generate multiple geostatistical realizations of facies, P-velocity, S-velocity, density, porosity, and water saturation. The method is validated through a blind well test and a comparison with the standard Bayesian linearized inversion.
We have developed a Markov chain Monte Carlo (MCMC) method for joint inversion of seismic data for the prediction of facies and elastic properties. The solution of the inverse problem is defined by the Bayesian posterior distribution of the properties of interest. The prior distribution is a Gaussian mixture model, and each component is associated to a potential configuration of the facies sequence along the seismic trace. The low frequency is incorporated by using facies-dependent depositional trend models for the prior means of the elastic properties in each facies. The posterior distribution is also a Gaussian mixture, for which the Gaussian component can be analytically computed. However, due to the high number of components of the mixture, i.e., the large number of facies configurations, the computation of the full posterior distribution is impractical. Our Gaussian mixture MCMC method allows for the calculation of the full posterior distribution by sampling the facies configurations according to the acceptance/rejection probability. The novelty of the method is the use of an MCMC framework with multimodal distributions for the description of the model properties and the facies along the entire seismic trace. Our method is tested on synthetic seismic data, applied to real seismic data, and validated using a well test.
One of the main objectives in the reservoir characterization is estimating the rock properties based on seismic measurements. We have developed a stochastic sampling method for the joint prediction of facies and petrophysical properties, assuming a nonparametric mixture prior distribution and a nonlinear forward model. The proposed methodology is based on a Markov chain Monte Carlo (MCMC) method specifically designed for multimodal distributions for nonlinear problems. The vector of model parameters includes the facies sequence along the seismic trace as well as the continuous petrophysical properties, such as porosity, mineral fractions, and fluid saturations. At each location, the distribution of petrophysical properties is assumed to be multimodal and nonparametric with as many modes as the number of facies; therefore, along the seismic trace, the distribution is multimodal with the number of modes being equal to the number of facies power the number of samples. Because of the nonlinear forward model, the large number of modes and as a consequence the large dimension of the model space, the analytical computation of the full posterior distribution is not feasible. We then numerically evaluate the posterior distribution by using an MCMC method in which we iteratively sample the facies, by moving from one mode to another, and the petrophysical properties, by sampling within the same mode. The method is extended to multiple seismic traces by applying a first-order Markov chain that accounts for the lateral continuity of the model properties. We first validate the method using a synthetic 2D reservoir model and then we apply the method to a real data set acquired in a carbonate field.
Contents of this paper were reviewed by the Technical Committee of the 16 th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.