The German Barcoding initiatives BFB and GBOL have generated a reference library of more than 16,000 metazoan species, which is now ready for applications concerning next generation molecular biodiversity assessments. To streamline the barcoding process, we have developed a meta-barcoding pipeline: We pre-sorted a single malaise trap sample (obtained during one week in August 2014, southern Germany) into 12 arthropod orders and extracted DNA from pooled individuals of each order separately, in order to facilitate DNA extraction and avoid time consuming single specimen selection. Aliquots of each ordinal-level DNA extract were combined to roughly simulate a DNA extract from a non-sorted malaise sample. Each DNA extract was amplified using four primer sets targeting the CO1-5’ fragment. The resulting PCR products (150-400bp) were sequenced separately on an Illumina Mi-SEQ platform, resulting in 1.5 million sequences and 5,500 clusters (coverage ≥10; CD-HIT-EST, 98%). Using a total of 120,000 DNA barcodes of identified, Central European Hymenoptera, Coleoptera, Diptera, and Lepidoptera downloaded from BOLD we established a reference sequence database for a local CUSTOM BLAST. This allowed us to identify 529 Barcode Index Numbers (BINs) from our sequence clusters derived from pooled Malaise trap samples. We introduce a scoring matrix based on the sequence match percentages of each amplicon in order to gain plausibility for each detected BIN, leading to 390 high score BINs in the sorted samples; whereas 268 of these high score BINs (69%) could be identified in the combined sample. The results indicate that a time consuming presorting process will yield approximately 30% more high score BINs compared to the non-sorted sample in our case. These promising results indicate that a fast, efficient and reliable analysis of next generation data from malaise trap samples can be achieved using this pipeline.
Despite considerable progress in the ability to measure the complex 3‐D structure of forests with the improvement of remote‐sensing techniques, our mechanistic understanding of how biodiversity is linked to canopy structure is still limited. Here we tested whether the increase in arthropod abundance and richness in beech forest canopies with increasing canopy complexity supports the more‐individuals hypothesis or the habitat‐heterogeneity hypothesis. We used fogging to collect arthropod samples from 80 standardized plots from canopies of single‐ to multi‐layered mature montane European beech stands. Tree height and an independent measure of vertical heterogeneity – the vertical distribution ratio – on each arthropod sampling plot were derived from high‐resolution full‐waveform airborne laser scanning data. Mixed‐model path analysis based on almost 20 000 specimens of 762 species from 11 orders provided support for the more‐individuals hypothesis, with higher arthropod abundance but not higher species richness in stands with a more equal vertical distribution of plant biomass. By contrast, we found no support for the habitat‐heterogeneity hypothesis. The increase in the number of individuals with increasing vertical distribution of biomass might be caused either by increasing leaf area, as indicated by higher space filling and productivity in multi‐layered stands, or by higher persistence of arthropod populations owing to better shelter, reduced competition and more refuges under harsh conditions, or by both. High‐resolution airborne laser scanning, with its ability to penetrate dense canopies under leaf‐on conditions, has proved suitable for measuring vertical structures as a predictor for canopy diversity. Expanding combinations of remote‐sensing and canopy‐biodiversity data opens many avenues for improving our understanding of the link between diversity and forest structures.
SUMMARYAmblyomma birmitum sp. nov. is formally described as a new record from 99 Ma old Burmese amber from Myanmar. This confirms the presence of the extant hard tick genus Amblyomma C.L. Koch, 1844 (Ixodida: Ixodidae) in the Late Cretaceous. This discovery is placed in its wider context and some reports of fossil hard ticks, such as a Hyalomma C.L. Koch, 1844 in Eocene Baltic amber, are misidentifications. The genus Amblyomma belongs to the clade Metastriata, a group which probably also accommodates two extinct genera, Cornupalpatum Poinar and Brown, 2003 and Compluriscutata Poinar and Buckley, 2008, also found in Burmese amber. All three fossils are thus only a little younger than published molecular divergence time estimates (ca. 124 ± 17 Ma) for the Metastriata lineage. Amblyomma has a largely Gondwanan distribution today. However, in some biogeographical scenarios, e.g. the Samafrica model, its predicted radiation time postdates the dissolution of the original Gondwana supercontinent raising questions about how its current distribution pattern was achieved.
Here we present a general collecting and preparation protocol for DNA barcoding of Lepidoptera as part of large-scale rapid biodiversity assessment projects, and a comparison with alternative preserving and vouchering methods. About 98% of the sequenced specimens processed using the present collecting and preparation protocol yielded sequences with more than 500 base pairs. The study is based on the first outcomes of the Indonesian Biodiversity Discovery and Information System (IndoBioSys). IndoBioSys is a German-Indonesian research project that is conducted by the Museum für Naturkunde in Berlin and the Zoologische Staatssammlung München, in close cooperation with the Research Center for Biology – Indonesian Institute of Sciences (RCB-LIPI, Bogor).
A status report with preliminary results for the IndoBioSys project is presented and the impact of the project results for our knowledge of the Indonesian fauna is discussed. Using the REST API available on the Barcode of Life Data System we recover 21,153 public records (3,390 BINs) from Indonesia and compare against the 21,813 records (3,580 BINs) generated by the IndoBioSys project. From all IndoBioSys BINs, 3,366 (94%) are new to Indonesia. IndoBioSys is responsible for a BIN increase of 36.5% in Lepidoptera, 62.6% in Trichoptera, 986% in Coleoptera, and 1,086% in Hymenoptera. After two years of the IndoBioSys project, the Museum Zoologicum Bogoriense became the depository institution of 51.9% of Lepidoptera records, 95.8% of Coleoptera records, 97.6% of Hymenoptera records and 59.4% of Trichoptera records for Indonesia available on Barcode of Life Data System (BOLD). Now, with 55% of all Indonesian records available on BOLD, it is the most important depository for records of Indonesian genetic biodiversity, housing more than 23,000 new voucher specimens in their collections. Before IndoBioSys, the Museum Zoologicum Bogoriense was responsible for only 9% of all records available in the Barcode of Life Data System for Indonesia, showing the importance of those pipelines in empowering the local institutions in becoming the reference depository of the local fauna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.