In this paper, we introduce maximum likelihood and Bayesian parameter estimation for the exponentiated discrete Weibull (EDW) distribution in presence of randomly right censored data. We also consider the inclusion of a cure fraction in the model. The performance of the maximum likelihood estimation approach is assessed by conducting an extensive simulation study with different sample sizes and different values for the parameters of the EDW distribution. The usefuness of the proposed model is illustrated with two examples considering real data sets.
Cure fraction models have been widely used to analyze survival data in which a proportion of the individuals isnot susceptible to the event of interest. This article considers frequentist and Bayesian methods to estimate the unknown model parameters of the exponentiated Weibull (EW) distribution considering right-censored survival data with a cure fraction and covariates. The EW distribution is as an extension to the Weibull distribution by considering an additional shape parameter to the model. We consider four types of cure fraction models: the mixture cure fraction (MCF), the nonmixture cure fraction (NMCF), the complementary promotion time cure (CPTC), and the cure rate proportional odds (CRPO) models. Bayesian inferences are obtained by using MCMC (Markov Chain Monte Carlo) methods. A simulation study was conducted to examine the performance of the maximum likelihood estimators for different sample sizes. Two real datasets were considered to illustrate the applicability of the proposed model. The EW distribution and its sub-models have the flexibility to accommodate different shapes for the hazard function and should be an attractive choice for survival data analysis when a cure fraction is present.
The statistical literature presents many continuous probability distributions with only one parameter, which are extensively used in the analysis of lifetime data, such as the exponential, the Lindley, and the Rayleigh distributions. Alternatively, the use of discretized versions of these distributions can provide a better fit for the data in many applications. As the novelty of this study, we present inferences for the discrete Bilal distribution (DB) with one parameter introduced by Altun et al. (2020) in the presence of right-censored data and cure fraction. We assume standard maximum likelihood methods based on asymptotic normality of the maximum likelihood estimators and also a Bayesian approach based on MCMC (Markov Chain Monte Carlo) simulation methods to get inferences for the parameters of the discrete BD distribution. The use of the proposed model was illustrated with three examples considering real medical lifetime data sets. From these applications, we concluded that the proposed model based on the discrete DB distribution has good performance even with the inclusion of a cure fraction in comparison to other existing discrete models, such as the DsFx-I, Lindley, Rayleigh, and Burr-Hatke probability distributions. Moreover, the model can be easily implemented in standard existing software, such as the R package. Under a Bayesian approach, we assumed a gamma prior distribution for the parameter of the DB discrete distribution. We also provided a brief sensitivity analysis assuming the half-normal distribution in place of the gamma distribution for the parameter of the DB distribution. From the obtained results of this study, we can conclude that the proposed methodology can be very useful for researchers dealing with medical discrete lifetime data in the presence of right-censored data and cure fraction.
This paper presents inferences for the discrete Bilal (DB) distribution introduced by Altun et al. ( 2020). We consider parameter estimation for DB distribution in the presence of randomly right-censored data. We use maximum likelihood and Bayesian methods for the estimation of the model parameters. We also consider the inclusion of a cure fraction in the model. The usefulness of the proposed model was illustrated with three examples considering real datasets. These applications suggested that the model based on DB distribution performs at least as good as some other traditional discrete models as the DsFx-I, discrete Lindley, discrete Rayleigh, and discrete Burr-Hatke distributions. R codes are provided in an appendix at the end of the paper so that reader can carry out their own analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.