The need to study cardiovascular diseases (CVD) has become more and more relevant as their prevalence has increased over the years. An intact endothelial wall is essential to vascular health. Certain factors are responsible for maintaining this tissue intact, including nitric oxide (NO), which provokes dilation of blood vessels in response to shear stress. Expression of the endothelial nitric oxide synthase (eNOS) enzyme, which produces nitric oxide in response to increases in blood flow, is of fundamental importance to maintenance of the vascular system. When this enzyme is inhibited, nitric oxide production is reduced, causing endothelial dysfunction. Since C-reactive protein inhibits production of nitric oxide by the eNOS enzyme, it is one of the causes of endothelial dysfunction and cardiovascular events. The objective of the present study was to review scientific articles in the literature related to the subject 'inflammatory markers and endothelial function' . A wide-ranging review of the current literature was conducted, using systematic analysis of bibliographic references indexed in PubMed, Scielo, Medline and LILACS database, for the years 1992 to 2013. The studies reviewed show that increases in inflammation causes reductions in NO and increases in cardiovascular events. Increased inflammation is associated with higher incidence of cardiovascular diseases.Keywords: inflammation; nitric oxide; endothelium. ResumoA necessidade de estudo das Doenças Cardiovasculares (DCV) vem à tona pelo aumento da sua prevalência ao longo dos anos. Uma parede endotelial íntegra é essencial para a saúde vascular. Alguns fatores são responsáveis pela integridade deste tecido, como o óxido nítrico (NO), que provoca a dilatação do vaso sanguíneo em resposta ao estresse de cisalhamento. A expressão da enzima óxido nítrico sintase endotelial (eNOS), que produz óxido nítrico em resposta ao incremento do fluxo sanguíneo, é fundamental para a manutenção do sistema vascular. Quando há inibição desta enzima, ocorre diminuição da produção de óxido nítrico, causando disfunção endotelial. A PCR inibe a produção de óxido nítrico pela enzima eNOS, sendo então uma causadora de disfunção endotelial e eventos cardiovasculares. O presente artigo tem como objetivo revisar artigos científicos na literatura relacionados ao tema 'marcadores inflamatórios e função endotelial' . Foi realizada uma ampla revisão de literatura atual, utilizando-se análise sistemática das referências bibliográficas nas bases de dados PubMed, Scielo, Medline e Lilacs, no período de 1992 a 2013. Os estudos revisados mostram que o aumento da inflamação causa uma diminuição de NO e aumento de eventos cardiovasculares. O aumento da inflamação está associado ao aumento da incidência de doenças cardiovasculares.Palavras-chave: inflamação; óxido nítrico; endotélio.
Nucleotidases participate in the regulation of physiological and pathological events, such as inflammation and coagulation. Exercise promotes distinct adaptations, and can influence purinergic signaling. In the present study, we investigated soluble nucleotidase activities in the blood serum of sedentary young male adults at pre- and post-acute moderate aerobic exercise. In addition, we evaluated how this kind of exercise could influence adenine nucleotide concentrations in the blood serum. Sedentary individuals were submitted to moderate aerobic exercise on a treadmill; blood samples were collected pre- and post-exercise, and serum was separated for analysis. Results showed increases in ATP, ADP, and AMP hydrolysis post-exercise, compared to pre-exercise values. The ecto-nucleotide pyrophosphatase/phosphodiesterase was also evaluated, showing an increased activity post-exercise, compared to pre-exercise. Purine levels were analyzed by HPLC in the blood serum, pre- and post-exercise. Decreased levels of ATP and ADP were found post-exercise, in contrast with pre-exercise values. Conversely, post-exercise levels of adenosine and inosine increased compared to pre-exercise levels. Our results indicate an influence of acute exercise on ATP metabolism, modifying enzymatic behavior to promote a protective biological environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.