The osmotic demyelination syndrome (ODS) is a non-primary inflammatory disorder of the central nervous system myelin that is often associated with a precipitous rise of serum sodium concentration. To investigate the physiopathology of ODS in vivo, we generated a novel murine model based on the abrupt correction of chronic hyponatremia. Accordingly, ODS mice developed impairments in brainstem auditory evoked potentials and in grip strength. At 24 hr post-correction, oligodendrocyte markers (APC and Cx47) were downregulated, prior to any detectable demyelination. Oligodendrocytopathy was temporally and spatially correlated with the loss of astrocyte markers (ALDH1L1 and Cx43), and both with the brain areas that will develop demyelination. Oligodendrocytopathy and astrocytopathy were confirmed at the ultrastructural level and culminated with necroptotic cell death, as demonstrated by pMLKL immunoreactivity. At 48 hr post-correction, ODS brains contained pathognomonic demyelinating lesions in the pons, mesencephalon, thalamus and cortical regions. These damages were accompanied by blood-brain barrier (BBB) leakages. Expression levels of IL-1β, FasL, TNFRSF6 and LIF factors were significantly upregulated in the ODS lesions. Quiescent microglial cells type A acquired an activated type B morphology within 24 hr post-correction, and reached type D at 48 hr. In conclusion, this murine model of ODS reproduces the CNS demyelination observed in human pathology and indicates ambiguous causes that is regional vulnerability of oligodendrocytes and astrocytes, while it discards BBB disruption as a primary cause of demyelination. This study also raises new queries about the glial heterogeneity in susceptible brain regions as well as about the early microglial activation associated with ODS.
SummaryBackground and objectives Vaptans (vasopressin V 2 -receptor antagonists) are a new approach for the treatment of hyponatremia. However, their indications remain to be determined, and their benefit compared with that of the usual treatments for the syndrome of inappropriate antidiuretic hormone secretion (SIADH) have not been evaluated. This prospective, long-term study compared the efficacy, tolerability, and safety of two oral vaptans with those of oral urea in patients with SIADH.Design, setting, participants, & measurements Patients with chronic SIADH of various origins were treated first with vaptans for 1 year. After an 8-day holiday period, they received oral urea for an additional 1-year follow-up. Serum sodium was measured every 2 months, and drug doses were adjusted accordingly.Results Thirteen participants were initially included in the study (serum sodium, 12563 mEq/L); 12 completed the 2-year treatment period. Treatment with vaptans (satavaptan, 5-50 mg/d, n=10; tolvaptan, 30-60 mg/day, n=2) increased natremia (serum sodium, 13563 mEq/L) during the 1-year vaptan period without escape. Hyponatremia recurred in the 12 participants when vaptans were stopped (holiday period). Urea improved the natremia with the same efficacy (serum sodium, 13562 mEq/L) as vaptans during the 1-year urea treatment period. One participant treated with tolvaptan withdrew from the study early because of excessive thirst. Another patient receiving urea developed hypernatremia without complications.Conclusions Urea has efficacy similar to that of vaptans for treatment of chronic SIADH. Tolerance is generally good for both agents.
Adequate protein folding is necessary for normal cell function and a tightly regulated process that requires proper intracellular ionic strength. In many cell types, imbalance between protein synthesis and degradation can induce endoplasmic reticulum (ER) stress, which if sustained, can in turn lead to cell death. In nematodes, osmotic stress induces massive protein aggregation coupled with unfolded protein response and ER stress. In clinical practice, patients sustaining rapid correction of chronic hyponatremia are at risk of osmotic demyelination syndrome. The intense osmotic stress sustained by brain cells is believed to be the major risk factor for demyelination resulting from astrocyte death, which leads to microglial activation, blood-brain barrier opening, and later, myelin damage. Here, using a rat model of osmotic demyelination, we showed that rapid correction of chronic hyponatremia induces severe alterations in proteostasis characterized by diffuse protein aggregation and ubiquitination. Abrupt correction of hyponatremia resulted in vigorous activation of both the unfolded protein response and ER stress accompanied by increased autophagic activity and apoptosis. Immunofluorescence revealed that most of these processes occurred in astrocytes within regions previously shown to be demyelinated in later stages of this syndrome. These results identify osmotic stress as a potent protein aggregation stimuli in mammalian brain and further suggest that osmotic demyelination might be a consequence of proteostasis failure on severe osmotic stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.