In previous work we presented TACO, a tool for efficient bounded verification. TACO translates programs annotated with contracts to a SAT problem which is then solved resorting to off-the-shelf SAT-solvers. TACO may deem propositional variables used in the description of a program initial states as being unnecessary. Since the worst-case complexity of SAT (a known NP problem) depends on the number of variables, most times this allows us to obtain significant speed ups. In this article we present TacoFlow, an improvement over TACO that uses dataflow analysis in order to also discard propositional variables that describe intermediate program states. We present an extensive empirical evaluation that considers the effect of removing those variables at different levels of abstraction, and a discussion on the benefits of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.