This paper reports thermodynamic properties of phase transitions of 2,4,6-trichloro and 2,4,6-tribromo anisoles and of 2,4,6-tribromophenol. The vapor pressures of both crystalline and liquid phases (including supercooled liquid) of the three compounds were measured, respectively, in the temperature ranges T = (297.1 to 368.3) K, T = (330.7 to 391.7) K, and T = (336.5 to 401.7) K, using a static method based on capacitance diaphragm manometers. Moreover, the sublimation vapor pressures of 2,4,6-tribromophenol were also measured in the temperature interval (307.2 to 329.2) K, using a Knudsen mass-loss effusion technique. The standard molar enthalpies, entropies, and Gibbs energies of sublimation and of vaporization, at reference temperatures, were derived from the experimental results as well as the (p,T) values of the triple point of each compound. The temperatures and molar enthalpies of fusion of the three benzene derivatives were determined using differential scanning calorimetry and were compared with the values derived indirectly from the vapor pressure measurements. The thermodynamic results were discussed together with the available literature data for 2,4,6-trichlorophenol. To help rationalize the phase behavior of these substances, the crystallographic structure of 2,4,6-tribromophenol was determined by single crystal X-ray diffraction.
The present work reports an experimental thermodynamic study of two nitrogen heterocyclic organic compounds, fenclorim and clopyralid, that have been used as herbicides. The sublimation vapor pressures of fenclorim (4,6-dichloro-2-phenylpyrimidine) and of clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) were measured, at different temperatures, using a Knudsen mass-loss effusion technique. The vapor pressures of both crystalline and liquid (including supercooled liquid) phases of fenclorim were also determined using a static method based on capacitance diaphragm manometers. The experimental results enabled accurate determination of the standard molar enthalpies, entropies and Gibbs energies of sublimation for both compounds and of vaporization for fenclorim, allowing a phase diagram representation of the (p,T) results, in the neighborhood of the triple point of this compound. The temperatures and molar enthalpies of fusion of the two compounds studied were determined using differential scanning calorimetry. The standard isobaric molar heat capacities of the two crystalline compounds were determined at 298.15 K, using drop calorimetry. The gas phase thermodynamic properties of the two compounds were estimated through ab initio calculations, at the G3(MP2)//B3LYP level, and their thermodynamic stability was evaluated in the gaseous and crystalline phases, considering the calculated values of the standard Gibbs energies of formation, at 298.15 K. All these data, together with other physical and chemical properties, will be useful to predict the mobility and environmental distribution of these two compounds.
This work reports an experimental study aiming to determine the thermodynamic properties of five chlorinated compounds with environmental impact. The vapor pressures of the crystalline phases of three isomers of dichlorobenzoic acid (2,4-, 2,5-, and 2,6-) and 2,6-dichlorobenzonitrile were measured at several temperatures using the Knudsen effusion technique. Another technique (a static method based on capacitance diaphragm manometers) allowed the measurement of the vapor pressures of both the crystalline and liquid phases of 2,4-dichlorobenzonitrile between 303.0 and 380.0 K. This latter technique also enabled the measurement of sublimation vapor pressures of 2,6-dichlorobenzonitrile over a larger range interval of temperatures, T = 328.7 and 391.8 K. The standard molar enthalpy, entropy, and Gibbs energy of sublimation (for all the compounds studied) and vaporization (for 2,4-dichlorobenzonitrile) were derived, at reference temperatures, from the experimental vapor pressure results. The temperatures and enthalpies of fusion and the isobaric heat capacities of the five crystalline-substituted benzenes were determined using differential scanning calorimetry. The contributions of the three substituents (-COOH, -CN, and -Cl) to the sublimation thermodynamic properties of the compounds studied were discussed.
The present work reports an experimental thermodynamic study of two nitrogen heterocyclic organic compounds, fenclorim and clopyralid, that have been used as herbicides. The sublimation vapor pressures of fenclorim (4,6-dichloro-2-phenylpyrimidine) and of clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) were measured, at different temperatures, using a Knudsen mass-loss effusion technique. The vapor pressures of both crystalline and liquid (including supercooled liquid) phases of fenclorim were also determined using a static method based on capacitance diaphragm manometers. The experimental results enabled accurate determination of the standard molar enthalpies, entropies and Gibbs energies of sublimation for both compounds and of vaporization for fenclorim, allowing a phase diagram representation of the (p,T) results, in the neighborhood of the triple point of this compound. The temperatures and molar enthalpies of fusion of the two compounds studied were determined using differential scanning calorimetry. The standard isobaric molar heat capacities of the two crystalline compounds were determined at 298.15 K, using drop calorimetry. The gas phase thermodynamic properties of the two compounds were estimated through ab initio calculations, at the G3(MP2)//B3LYP level, and their thermodynamic stability was evaluated in the gaseous and crystalline phases, considering the calculated values of the standard Gibbs energies of formation, at 298.15 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.