This Feature Article is part of a series identified by the Editorial Board as reporting findings of exceptional significance.Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved August 8, 2014 (received for review February 22, 2014) Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether lowfrequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ-and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.neuronal synchronization | attention | perceptual organization | phase coherence | Granger causality A reas of the visual cortex are arranged hierarchically, with low-level areas representing simple features and higher areas representing the more complex aspects of the visual world (1, 2). Neurons in many visual areas are coactive during the perception of a visual stimulus and it is difficult to disentangle the influences of lower areas onto higher areas from the effects that go in the opposite direction (3). Studies of visual cognition could benefit enormously from markers of cortical activity that distinguish between feedforward and feedback effects. One such putative marker is cortical oscillatory activity, because oscillations of different frequencies have been proposed to propagate either in feedforward or in the feedback direction (4, 5), but experimental evidence for this view is sparse (6).Low-frequency rhythms, like the α-rhythm-which is particularly pronounced in the visual cortex-have been proposed to characterize spontaneous activity (7,8) as the α-rhythm increases when the subject closes the eyes (9). More recent observations have also implicated α-oscillations in the active suppression of irrelevant, unattended information (10, 11). In contrast, the high-frequency γ-rhythm increases if visual stimuli are presented, and in particular if they are task-relevant (12, 13). One influential hypothesis has been that γ-oscillations play a role in feature binding (14), but later studies cast doubt on this proposal (15,16). A more recent hypothesis holds that γ-oscillations facilitate the communication between cortical areas (17), but both evidence in fa...
Why are some visual stimuli consciously detected, whereas others remain subliminal? We investigated the fate of weak visual stimuli in the visual and frontal cortex of awake monkeys trained to report stimulus presence. Reported stimuli were associated with strong sustained activity in the frontal cortex, and frontal activity was weaker and quickly decayed for unreported stimuli. Information about weak stimuli could be lost at successive stages en route from the visual to the frontal cortex, and these propagation failures were confirmed through microstimulation of area V1. Fluctuations in response bias and sensitivity during perception of identical stimuli were traced back to prestimulus brain-state markers. A model in which stimuli become consciously reportable when they elicit a nonlinear ignition process in higher cortical areas explained our results.
The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization.
Evolutionary psychologists have been interested in male preferences for particular female traits that are thought to signal health and reproductive potential. While the majority of studies have focused on what makes specific body traits attractive-such as the waist-to-hip ratio, the body mass index, and breasts shape and size-there is little empirical research that has examined individual differences in male preferences for specific traits (e.g., favoring breasts over buttocks). The current study begins to fill this empirical gap. In the first experiment (Study 1), 184 male participants were asked to report their preference between breasts and buttocks on a continuous scale. We found that (1) the distribution of preference was bimodal, indicating that Argentinean males tended to define themselves as favoring breasts or buttocks but rarely thinking that these traits contributed equally to their choice and (2) the distribution was biased towards buttocks. In a second experiment (Study 2), 19 male participants were asked to rate pictures of female breasts and buttocks. This study was necessary to generate three categories of pictures with statistically different ratings (high, medium, and low). In a third experiment (Study 3), we recorded eye-movements of 25 male participants while they chose the more attractive between two women, only seeing their breasts and buttock. We found that the first and last fixations were systematically directed towards the self-reported preferred trait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.