The synchronized contraction of myocytes in cardiac muscle requires the structural and functional integrity of the gap junctions present between these cells. Gap junctions are clusters of intercellular channels formed by transmembrane proteins of the connexin (Cx) family. Products of several Cx genes have been identified in the mammalian heart (eg, Cx45, Cx43, Cx40, and Cx37), and their expression was shown to be regulated during the development of the myocardium. Cx43, Cx40, and Cx45 are components of myocyte gap junctions, and it has also been demonstrated that Cx40 was expressed in the endothelial cells of the blood vessels. The aim of the present work was to investigate the expression and regulation of Cx40, Cx43, and Cx37 during the early stages of mouse heart maturation, between 8.5 days post coitum (dpc), when the first rhythmic contractions appear, and 14.5 dpc, when the four-chambered heart is almost completed. At 8.5 dpc, only the reverse-transcriptase polymerase chain reaction technique has allowed identification of Cx43, Cx40, and Cx37 gene transcripts in mouse heart, suggesting a very low activity level of these genes. From 9.5 dpc, all three transcripts became detectable in whole-mount in situ-hybridized embryos, and the most obvious result was the labeling of the vascular system with Cx40 and Cx37 anti-sense riboprobes. Cx40 and Cx37 gene products (transcript and/or protein) were demonstrated to be expressed in the vascular endothelial cells at all stages examined. By contrast, only Cx37 gene products were found in the endothelial cells of the endocardium. In heart, Cx37 was expressed exclusively in these cells, which rules out any direct involvement of this Cx in the propagation of electrical activity between myocytes and the synchronization of contractions. Between 9.5 and 11.5 dpc, Cx40 gene activation in myocytes was demonstrated to proceed according to a caudorostral gradient involving first the primitive atrium and the common ventricular chamber (9.5 dpc) and then the right ventricle (11.5 dpc). During this period of heart morphogenesis, there is clearly a temporary and asymmetrical regionalization of the Cx40 gene expression that is superimposed on the functional regionalization. In addition, comparison of Cx40 and Cx43 distribution at the above developmental stages has shown that these Cxs have overlapping (left ventricle) or complementary (atrial tissue and right ventricle) expression patterns.
In adult mouse heart, CX40 is expressed in the atria and the proximal part of the ventricular conduction system (the His bundle and the upper parts of the bundle branches). This cardiac tissue is specialized in the conduction of the electrical impulse. CX40 is the only mouse connexin known to be expressed in these parts of the adult conductive tissue and is thus considered as a marker of the conduction system. In the present report, we investigated CX40 expression and distribution during mouse heart development. We first demonstrate that CX40 mRNA is regulated throughout development, as are other heart connexin transcripts, i.e., CX37, CX43, and (2x45, with a decreasing abundance as development proceeds. We also show that the CX40 transcript and protein are similarly regulated, CX40 being expressed as two different phosphorylated and un-phosphorylated forms of 41 and 40 kDa, respectively. Surprisingly, distribution studies demonstrated that CX40 is widely expressed in 11 days post-coitum (dpc) embryonic heart, where it is detected in both the atria and ventricle primordia. As development proceeds, the CX40 distribution pattern in the atria is maintained, whereas a more dynamic pattern is observed in the ventricles. From 14 dpc onwards, as the adult ventricular conduction system differentiates, CX40 decreases in the trabecular network and it is preferentially distributed in the ventricular conduction system. CX40 is thus the marker of the early differentiating conduction system. It is hypothesized that the conduction system is present in unorganized "embryonic" form at 11 dpc and trans-differentiates by 14 dpc into the adult conduction system. 0 1995 Wiley-Liss, Inc.
␣1-Adrenergic receptors mediate several biological effects of catecholamines, including the regulation of myocyte growth and contractility and transcriptional regulation of the atrial natriuretic factor (ANF) gene whose promoter contains an ␣1-adrenergic response element. The nuclear pathways and effectors that link receptor activation to genetic changes remain poorly understood. Here, we describe the isolation by the yeast one-hybrid system of a cardiac cDNA encoding a novel nuclear zinc finger protein, Zfp260, belonging to the Krüppel family of transcriptional regulators. Zfp260 is highly expressed in the embryonic heart but is downregulated during postnatal development. Functional studies indicate that Zfp260 is a transcriptional activator of ANF and a cofactor for GATA-4, a key cardiac regulator. Knockdown of Zfp260 in cardiac cells decreases endogenous ANF gene expression and abrogates its response to ␣1-adrenergic stimulation. Interestingly, Zfp260 transcripts are induced by ␣1-adrenergic agonists and are elevated in genetic models of hypertension and cardiac hypertrophy. The data identify Zfp260 as a novel transcriptional regulator in normal and pathological heart development and a nuclear effector of ␣1-adrenergic signaling.The endogenous catecholamines epinephrine and norepinephrine are key regulators of numerous physiologic functions, including learning, memory, and cardiovascular and endocrine homeostasis. Their dysregulation has been implicated in human conditions such as depression and addiction and in cardiovascular and metabolic diseases. Their effects are mediated by three classes of adrenergic receptors (ARs), , ␣1, and ␣2, each comprised of three distinct gene products. They all belong to the superfamily of seven transmembrane G-protein-coupled receptors. ␣1-ARs are critical for a variety of catecholamine actions such as the control of blood pressure, smooth muscle contraction, myocardial function, and glycogenolysis. The importance of ␣1-ARs in physiology and pathophysiology is evidenced by the wide clinical use of ␣1-AR agonists and antagonists for the treatment of cardiovascular disease, flu and allergy symptoms, and benign prostate hyperplasia (40, 43). Paradoxically, the molecular mechanisms underlying ␣1-AR action remain undefined.Historically, the role of ␣1-ARs in different biologic systems was largely inferred from pharmacologic studies, but the development of transgenic mice with targeted deletion or overexpression of specific ␣1-AR subtypes has further confirmed the essential role of specific ␣1-ARs in regulation of physiologic processes (reviewed in references 40 and 44). For example, ␣1-null mice rapidly develop hyperinsulinemia, insulin resistance, and obesity in response to high-fat feeding, confirming the important role of ␣1-AR in the regulation of glucose homeostasis (7). The use of genetically altered mice also confirmed the essential role of ␣1-ARs in mediating the effects of some psychostimulants and opiates and, more generally, their involvement in the regulation of vario...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.