Background Mutations accrued by SARS-CoV-2 lineage P.1-first detected in Brazil in early January, 2021-include amino acid changes in the receptor-binding domain of the viral spike protein that also are reported in other variants of concern, including B.1.1.7 and B.1.351. We aimed to investigate whether isolates of wild-type P.1 lineage SARS-CoV-2 can escape from neutralising antibodies generated by a polyclonal immune response. MethodsWe did an immunological study to assess the neutralising effects of antibodies on lineage P.1 and lineage B isolates of SARS-CoV-2, using plasma samples from patients previously infected with or vaccinated against SARS-CoV-2. Two specimens (P.1/28 and P.1/30) containing SARS-CoV-2 lineage P.1 (as confirmed by viral genome sequencing) were obtained from nasopharyngeal and bronchoalveolar lavage samples collected from patients in Manaus, Brazil, and compared against an isolate of SARS-CoV-2 lineage B (SARS.CoV2/SP02.2020) recovered from a patient in Brazil in February, 2020. Isolates were incubated with plasma samples from 21 blood donors who had previously had COVID-19 and from a total of 53 recipients of the chemically inactivated SARS-CoV-2 vaccine CoronaVac: 18 individuals after receipt of a single dose and an additional 20 individuals (38 in total) after receipt of two doses (collected 17-38 days after the most recent dose); and 15 individuals who received two doses during the phase 3 trial of the vaccine (collected 134-230 days after the second dose). Antibody neutralisation of P.1/28, P.1/30, and B isolates by plasma samples were compared in terms of median virus neutralisation titre (VNT 50 , defined as the reciprocal value of the sample dilution that showed 50% protection against cytopathic effects). Findings In terms of VNT 50 , plasma from individuals previously infected with SARS-CoV-2 had an 8•6 times lower neutralising capacity against the P.1 isolates (median VNT50 30 [IQR <20-45] for P.1/28 and 30 [<20-40] for P.1/30) than against the lineage B isolate (260 [160-400]), with a binominal model showing significant reductions in lineage P.1 isolates compared with the lineage B isolate (p≤0•0001). Efficient neutralisation of P.1 isolates was not seen with plasma samples collected from individuals vaccinated with a first dose of CoronaVac 20-23 days earlier (VNT 50 s below the limit of detection [<20] for most plasma samples), a second dose 17-38 days earlier (median VNT 50 24 [IQR <20-25] for P.1/28 and 28 [<20-25] for P.1/30), or a second dose 134-260 days earlier (all VNT 50 s below limit of detection). Median VNT 50 s against the lineage B isolate were 20 (IQR 20-30) after a first dose of CoronaVac 20-23 days earlier, 75 (<20-263) after a second dose 17-38 days earlier, and 20 (<20-30) after a second dose 134-260 days earlier. In plasma collected 17-38 days after a second dose of CoronaVac, neutralising capacity against both P.1 isolates was significantly decreased (p=0•0051 for P.1/28 and p=0•0336 for P.1/30) compared with that against the lineage B isolate. All data we...
Background Common variable immunodeficiency is the most prevalent symptomatic primary immunodeficiency in adults. Affected patients fail to mount an appropriate humoral response against community acquired infectious diseases and recent reports have provided data supporting the increased susceptibility of these patients to severe SARS-CoV-2 infections. In this context, the infusion of COVID-19 convalescent plasma could represent an effective therapeutic strategy. Case presentation 25-year old woman diagnosed with common variable immunodeficiency in 2013, developed severe COVID-19 that rapidly progressed to pneumonia presenting with multiple bilateral lung opacities that were both central and peripheral and presented as ground-glass and consolidation types involving all lobes, bilaterally. As blood oxygen saturation decayed and lung abnormalities were not responsive to large spectrum antibiotics and corticosteroids, patient was placed on mechanical ventilation and compassionate-use of approved COVID-19 convalescent donor plasma was introduced. The patient presented a rapid response to the approach and mechanical ventilation could be interrupted 24 h after first dose of COVID-19 convalescent donor plasma. As a whole, the patient received four doses of 200 mL convalescent plasma during a period of 6 days. There was rapid improvement of clinical status, with interruption of supplemental oxygen therapy after 6 days and reduction of lung abnormalities as evidence by sequential computed tomography scans. Conclusions This is a single patient report that adds to other few reports on common variable immunodeficiency and agammaglobulinemia, suggesting that COVID-19 convalescent donor plasma could be a valuable therapeutic approach to treat patients affected by dysgammaglobulinemias and presenting severe COVID-19.
Background Patient blood management (PBM) describes a set of evidence-based practices to optimize medical and surgical patient outcomes by clinically managing and preserving a patient’s own blood. This concepts aims to detect and treat anemia, minimize the risk for blood loss and the need for blood replacement for each patient through a coordinated multidisciplinary care process. In combination with blood loss, anemia is the main driver for transfusion and all three are independent risk factors for adverse outcomes including morbidity and mortality. Evidence demonstrates that PBM significantly improves outcomes and safety while reducing cost by macroeconomic magnitudes. Despite its huge potential to improve healthcare systems, PBM is not yet adopted broadly. The aim of this study is to analyze the collective experiences of a diverse group of PBM implementors across countries reflecting different healthcare contexts and to use these experiences to develop a guidance for initiating and orchestrating PBM implementation for stakeholders from diverse professional backgrounds. Methods Semi-structured interviews were conducted with 1–4 PBM implementors from 12 countries in Asia, Latin America, Australia, Central and Eastern Europe, the Middle East, and Africa. Responses reflecting the drivers, barriers, measures, and stakeholders regarding the implementation of PBM were summarized per country and underwent qualitative content analysis. Clustering the resulting implementation measures by levels of intervention for PBM implementation informed a PBM implementation framework. Results A set of PBM implementation measures were extracted from the interviews with the implementors. Most of these measures relate to one of six levels of implementation including government, healthcare providers, funding, research, training/education, and patients/public. Essential cross-level measures are multi-stakeholder communication and collaboration. Conclusion The implementation matrix resulting from this research helps to decompose the complexity of PBM implementation into concrete measures on each implementation level. It provides guidance for diverse stakeholders to design, initiate and develop strategies and plans to make PBM a national standard of care, thus closing current practice gaps and matching this unmet public health need.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.