The prostate is a mammalian gland that shows a complex process of organogenesis. Here, a morphological study to characterize the organogenesis of the ventral prostate lobe in male gerbils was conducted. The urogenital sinus (UGS) was dissected out and processed for paraffin embedding. Histological sections were subjected to cytochemical, immunofluorescence, immunohistochemical, and three-dimensional reconstruction techniques. We found that the first ventral buds emerged from the ventral urethral epithelium between the days 20 and 21 of prenatal life, reaching the ventral mesenchymal pad and initiating the branching process on the first day of postnatal life. The buds presented a V-shaped elongation, suggesting that the smooth muscle layer (SML) plays an important role during budding events. Indeed, whereas the androgen receptor (AR) was preferentially found in the UGS mesenchyme (UGM), estrogen receptor alpha (ERα) was localized in both the UGM and in the emerging buds. This study characterized the morphological aspects of the budding process in a different rodent from rat and mice, serving as a new model for future studies on developmental biology of the prostate.
Telocytes are CD34‐positive interstitial cells, known to exert several functions, one of which is a role in tissue organisation, previously demonstrated by telocytes in the myocardium. The existence of telocytes in the prostate has recently been reported, however, there is a lack of information regarding the function of these cells in prostate tissue, and information regarding the possible role of these cells in prostatic development. This study used immunofluorescence techniques in prostate tissue and prostatic telocytes in culture to determine the relationship between telocytes and prostate morphogenesis. Furthermore, immunofluorescent labelling of telocytes was performed on prostate tissue at different stages of early postnatal development. Initially, CD34‐positive cells are found at the periphery of the developing alveoli, later in the same region, c‐kit‐positive cells and cells positive for both factors are verified and CD34‐positive cells were predominantly observed in the interalveolar stroma and the region surrounding the periductal smooth muscle. Fluorescence assays also demonstrated that telocytes secrete TGF‐β1 and are ER‐Beta (ERβ) positive. The results suggest that telocytes play a changing role during development, initially supporting the differentiation of periductal and perialveolar smooth muscle, and later, producing dense networks that separate alveoli groups and form a barrier between the interalveolar region and periurethral smooth muscle. We conclude that telocytes play a relevant role in prostate tissue organisation during postnatal development.
The female prostate was first described by Reijnier de Graaf in 1672, and even after several years this gland is still a matter of controversy. Part of this is because the biological function of this female gland is unclear. Moreover, when compared with the male prostate, the existence of this organ in females does not make sense, mainly when we consider that the major function of this gland is to produce a secretion that is responsible for guarantee the sperm survival and assure the reproductive success. However, even under a controversy field, we now have a lot of scientific information which enhances our knowledge of several important biological aspects of this gland. It is clear that this gland is found in some female mammals including humans, rodents, rabbits, bats, and dogs. Several studies with rodents showed that the female prostate is homolog of the male prostate, showing strong macroscopic and microscopic similarities with the ventral lobe of males. Besides these aspects, there are several studies reporting that diseases such as cysts, hyperplasia, and carcinoma may affect the female prostate. Therefore, although diseases involving the female prostate are rare, the susceptibility of this organ to develop lesions must be considered, especially in our recent years in which the exposure to endocrine-disrupting chemicals has greatly increased. Finally, further studies will be necessary to enhance our understanding about this gland, mainly of the developmental, evolutionary, and biological functions.
Telocytes are CD34-positive cells with a fusiform cell body and long, thin cytoplasmic projections called telopodes. These cells were detected in the stroma of various organs, including the prostate. The prostate is a complex gland capable of undergoing involution due to low testosterone levels; and this condition can be reversed with testosterone replacement. Telocyte function in the mature prostate remains to be dermined, and it is not known whether telocytes can take place in tissue remodeling during prostate involution and regrowth. The present study employed structural, ultrastructural and immunohistochemical methods to investigate the telocyte’s phenotypes in the ventral prostate (VP) from control (CT), castrated (CS) and testosterone replacement (TR) groups of adult male Wistar rats. Telocytes were found in the subepithelial, perimuscular and interstitical regions around glandular acini. Telocytes from CT animals have condensed chromatin and long and thin telopodes. In CS group, telocytes appeared quiescent and exhibited layers of folded up telopodes. After TR, telocytes presented loose chromatin, abundant rough endoplasmic reticulum and enlarged telopodes, closely associated with bundles of collagen fibrils. We called these cells “telocytes with a synthetic phenotype”. As testosterone levels and glandular morphology returned toward to the CT group parameters, after 10 days of TR, these telocytes progressively switched to the normal phenotype. Our results demonstrate that telocytes exhibit phenotypic plasticity upon androgen manipulation and interact with fibroblast and smooth muscle cells to maintain glandular architecture in control animals and during tissue remodeling after hormonal manipulation.
The development of the prostate in male rodents, which involves complex epithelial-mesenchymal interactions between the urogenital sinus epithelium (UGE) and the urogenital sinus mesenchyme (UGM), has been deeply studied. In females, however, this process is not very clear. In this study, the postnatal development of the prostate in female Mongolian gerbils employing three-dimensional (3D) reconstructions, histochemical, and immunohistochemical techniques was characterized. It was observed that prostatic branching and differentiation in females was induced by a single mesenchyme localized at a ventrolateral position, which was named as ventrolateral mesenchyme (VLM); furthermore, the canalization of solid buds began on the third postnatal day (P3) and the branching morphogenesis on P5. We observed secretions in the acini at the end of the first month, and, on P45, the acini were completely differentiated. The strong cell proliferation phase in the first week coincided with the mesenchymal expression of estrogen receptor 1 (ESR1). The expression of androgen receptor (AR) paralleled cell differentiation, and, on P30, immunolabelling with p63 was restricted to basal cells. This study serves as a baseline parameter for future research on disruptions that could affect the development of the female prostate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.