OBJECTIVE: To assess the health risk of exposure to benzene for a community affected by a fuel leak. METHODS: Data regarding the fuel leak accident with, which occurred in the Brasilia, Federal District, were obtained from the Fuel Distributor reports provided to the environmental authority. Information about the affected population (22 individuals) was obtained from focal groups of eight individuals. Length of exposure and water benzene concentration were estimated through a groundwater flow model associated with a benzene propagation model. The risk assessment was conducted according to the Agency for Toxic Substances and Disease Registry methodology. RESULTS: A high risk perception related to the health consequences of the accident was evident in the affected community (22 individuals), probably due to the lack of assistance and a poor risk communication from government authorities and the polluting agent. The community had been exposed to unsafe levels of benzene (> 5 µg/L) since December 2001, five months before they reported the leak. The mean benzene level in drinking water (72.2 µg/L) was higher than that obtained by the Fuel Distributer using the Risk Based Corrective Action methodology (17.2 µg/L).The estimated benzene intake from the consumption of water and food reached a maximum of 0.0091 µg/kg bw/day (5 x 10-7 cancer risk per 106 individuals). The level of benzene in water vapor while showering reached 7.5 µg/m3 for children (1 per 104 cancer risk). Total cancer risk ranged from 110 to 200 per 106 individuals. CONCLUSIONS: The population affected by the fuel leak was exposed to benzene levels that might have represented a health risk. Local government authorities need to develop better strategies to respond rapidly to these types of accidents to protect the health of the affected population and the environment.
One of the first steps to implement a policy for groundwater resources management is knowing the groundwater recharge. However, the unavailability of data and resources to execute field studies increase the uncertainty associated with the estimation of groundwater recharge. To fill this gap, the present work aimed to propose a method to predict groundwater recharge at non-instrumented hydrographic basins. The approach proposed is based on using an abacus to execute the transposition and/or regionalization of results generated in an experimental basin. The methodology comprised the estimation and mapping of recharge rates in the experimental basin using three distinct approaches—numerical modelling of the saturated zone, distributed hydrological modelling of the vadose zone, and the method of fluctuation of the water table elevation—and the following generation of the abacus, with average recharge values for combinations of soil class, land use/cover and slope using geographic information systems. The results indicate that the abacus is consistent for some Ferrasol areas, that the reliability of average regionalized values depends on the complexity of the physical environment—soil class, land use/cover, and slope—and that new studies, focusing on the hydro-physical characterization of soils, might produce more reliable estimations.
Although being the second largest biome in South America, the Cerrado biome is understudied in terms of hydrological modeling of the interception processes of its different vegetation types. To better understand its net precipitation components, high-temporal-resolution throughfall data were used to parameterize the Gash Analytical Model on a per storm basis. Two different methods (Single Event Regression—SI, and Particle Swarm Optimization—PSO) for parametrizing the Gash model were tested. Simulated throughfall from 35 events showed the Nash coefficient ranging from 0.779 to 0.989, confirming the good phenomenological approach of the Gash model. One of the most important results presented in this work was the analysis of the variability of the parameters. Considering the PSO method, we observed a mean free throughfall (ρ) of 0.17, with a confidence interval ranging from 0.16 to 0.18. The storage (S) confidence intervals ranged from 1.11 mm to 1.62 mm, with a mean value of 1.37 mm. The observed saturation depth (P′G) mean value was 1.66 mm, with a confidence interval from 1.35 mm to 1.97 mm. Finally, the mean evaporation precipitation rate (E/R) was of 0.20, with confidence bands from 0.15 to 0.24. Overall, there were observed higher losses from the Cerrado compared to other Brazilian biomes such as the Amazon and Atlantic Forest. These findings can contribute to the parameterization of hydrological models applied to the Brazilian Cerrado.
Groundwater recharge is a key hydrological process for integrated water resource management, as it recharges aquifers and maintains the baseflow of perennial rivers. In Brazil, the Cerrado biome is an important continental recharge zone, but information on rates and spatial distribution is still lacking for this country. The objective of this work was to characterize the groundwater recharge process in phreatic aquifers of the Cerrado biome. For this, an experimental watershed representative of the referred biome was established and intensively monitored. The methodology consisted of an inverse numerical modeling approach of the saturated zone and three classic methods of recharge evaluation—hydrological modeling, baseflow separation, and water table elevation. The results indicated average potential recharge around 35% of the annual precipitation, average effective recharge around 21%, and higher rates occurring in flat areas of Ferralsols covered with natural vegetation of the Cerrado biome. As the level of uncertainty inferred from the methods was high, these results were considered a first attempt and will be better evaluated by comparison with other methods not applied in this work, such as the lysimeter and chemical tracer methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.