Riparian ecosystems are suffering anthropogenic threats that reduce biodiversity and undermine ecosystem services. However, there is a great deal of uncertainty about the way species composition of assemblages is related to ecosystem function, especially in a landscape fragmentation context.Here, we assess the impact of habitat loss and disturbance on Functional Diversity (FD) components Functional Redundancy (FRed), Functional Evenness (FEve), and Functional Richness (FRic) of riparian forest bird assemblages to evaluate (a) how FD components respond to riparian forest width reduction and vegetation disturbance; (b) the existence of thresholds within these relationships; (c) which of the main birds diet guild (frugivores, insectivores, and omnivores) respond to such thresholds. We predict that FD components will be affected negatively and nonlinearly by riparian changes. However, guilds could have different responses due to differences of species sensitivity to fragmentation and disturbance. We expect to find thresholds in FD responses, because fragmentation and disturbance drive loss of specific FD components.Our results show that FRed and FEve were linearly affected by width and disturbance of riparian habitats, respectively. FRed was significantly lower in riparian forests assemblages below 400 m wide, and FEve was significantly higher above 60% disturbance. These responses of FD were also followed to the decline in insectivores and frugivores richness in riparian forests most affected by these changes.Consequently, our study suggests communities do not tolerate reduction in riparian forest width or disturbance intensification without negative impact on FD, and this becomes more critical for riparian area <400‐m wide or with more than 60% disturbance. This minimum riparian width required to maintain FRed is greater than the minimum width required for riparian forests by Brazilian law. Thus, it is important to consider mechanisms to expand riparian habitats and reduce the disturbance intensity in riparian forests so that riparian bird community FD may be effectively conserved.
Agricultural intensification is one of the major factors driving biodiversity loss. However, most studies in human-dominated landscapes have used taxonomic diversity in their analysis, ignoring evolutionary relationships. Consequently, the relationship between landscape structure and phylogenetic diversity is not well understood. Here, we tested the hypothesis that landscape heterogeneity is positively related to bird phylogenetic indexes of diversity and structure, leading to over-dispersed phylogenies in very heterogeneous landscapes. We analyzed phylogenetic responses in interfaces between forest edges and anthropogenic matrices (forest-pasture and forest-eucalyptus) using generalized linear mixed models. We also compared these indexes between land covers to assess which one best preserves the phylogenetic history of communities. We used both traditional phylogenetic indexes and those corrected for species richness. Our results showed that phylogenetic diversity varied significantly between land cover types, but this did not occur when we removed effects associated with species richness, suggesting that all land covers preserve similar levels of evolutionary history. Additionally, our best models showed a positive relationship between landscape heterogeneity and bird phylogenetic indexes of diversity and structure, but the strength of these relationships may be land cover dependent. In summary, our work highlights the influence of landscape heterogeneity on the phylogenetic diversity and structure of bird communities, reinforcing the need for its incorporation into conservation-based studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.