The self-nonself discrimination hypothesis remains a landmark concept in immunology. It proposes that tolerance breaks down in the presence of nonself antigens. In strike contrast, in statistics, occurrence of nonself elements in a sample (i.e., outliers) is not obligatory to violate the null hypothesis. Very often, what is crucial is the combination of (self) elements in a sample. The two views on how to detect a change seem challengingly different and it could seem difficult to conceive how immunological cellular interactions could trigger responses with a precision comparable to some statistical tests. Here it is shown that frustrated cellular interactions reconcile the two views within a plausible immunological setting. It is proposed that the adaptive immune system can be promptly activated either when nonself ligands are detected or self-ligands occur in abnormal combinations. In particular we show that cellular populations behaving in this way could perform location statistical tests, with performances comparable to t or KS tests, or even more general data mining tests such as support vector machines or random forests. In more general terms, this work claims that plausible immunological models should provide accurate detection mechanisms for host protection and, furthermore, that investigation on mechanisms leading to improved detection in “in silico” models can help unveil how the real immune system works.
Abstract. In complex systems, feedback loops can build intricate emergent phenomena, so that a description of the whole system cannot be easily derived from the properties of the individual parts. Here we propose that inter-molecular frustration mechanisms can provide non trivial feedback loops which can develop nontrivial specificity amplification. We show that this mechanism can be seen as a more general form of a kinetic proofreading mechanism, with an interesting new property, namely the ability to tune the specificity amplification by changing the reactants concentrations. This contrasts with the classical kinetic proofreading mechanism in which specificity is a function of only the reaction rate constants involved in a chemical pathway. These results are also interesting because they show that a wide class of frustration models exists that share the same underlining kinetic proofreading mechanisms, with even richer properties. These models can find applications in different areas such as evolutionary biology, immunology and biochemistry.
Cellular frustrated models have been developed to describe how the adaptive immune system works. They are composed by independent agents that continuously pair and unpair depending on the information that one sub-set of these agents display. The emergent dynamics is sensitive to changes in the displayed information and can be used to detect anomalies, which can be important to accomplish the immune system main function of protecting the host. Therefore, it has been hypothesized that these models could be adequate to model the immune system activation. Likewise it has been hypothesized that these models could provide inspiration to develop new artificial intelligence algorithms for data mining applications. However, computational algorithms do not need to follow strictly the immunological reality. Here, we investigate efficient implementation strategies of these immune inspired ideas for anomaly detection applications and use real data to compare the performance of cellular frustration algorithms with standard implementations of one-class support vector machines and deep autoencoders. Our results demonstrate that more efficient implementations of cellular frustration algorithms are possible and also that cellular frustration algorithms can be advantageous for semi-supervised anomaly detection applications given their robustness and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.