Water utilities collect, store and manage a vast set of data using a large set of information systems (IS). For Infrastructure Asset Management (IAM) planning those data need to be processed and transformed into information. However, information management efficiency often falls short of desired results. This happens particularly in municipalities where management is structured according to local government model conventions. Besides the existing IS at utilities' disposal, engineers and managers take their decisions based on information that is often incomplete, inaccurate or out-of-date. One of the main challenges faced by asset managers is integrating the several, often conflicting, sources of information available on the infrastructure, its condition and performance, and the various predictive analyses that can assist in prioritizing projects or interventions. This paper presents an overview of the IS used by Portuguese water utilities and discusses how data from different IS can be integrated in order to support IAM.
This paper presents a set of computational tools specially developed for supporting the operation and management of water distribution systems towards digital transformation of water services. These tools were developed in the scope of two R&D projects carried out in Portugal, DECIdE and WISDom, during 2018–2022. The DECIdE project focused on the development of tools for importing cadastral and operational data, as well as on the three operational tools for supporting the performance assessment: the first allows the calculation of different key performance indicators, both at a global and sectorial level, which is an annual requirement of the water regulator, and the other two allow the calculation of the water and the energy balances and a set of complementary indices. The WISDom project aimed at the implementation of applications that directly address specific water utility needs, namely, the flow rate data processing, the optimal location of pressure sensors, the identification of critical areas in the distribution network for pipe burst location, and the prioritization of pipes for rehabilitation. Implemented tools are useful to support water utilities in the daily operation and management of their systems, being a step forward towards digital transformation of the water sector.
Most of urban water infrastructure around the world were built several decades ago and nowadays they are deteriorated. So, the assets that constitute these infrastructures need to be rehabilitated. Since most of the assets are buried, water utilities face the challenge of deciding how, where and when to rehabilitate. Condition assessment is a vital component on plan rehabilitation actions and is mostly based on the data collected from the managed networks. This collected data need to be put together in order to be transformed into useful information. Nonetheless, the large amount of assets and data involved makes data and information management a challenging task for water utilities, especially in those with as lower digital maturity level. This paper highlights the importance of data and information systems' management for urban water infrastructure condition assessment based on the authors' experience.
This article proposes a novel methodology to determine the optimal number of pressure sensors for the real-time monitoring of water distribution networks based on a quality hypervolume indicator. The proposed methodology solves the optimization problem for different numbers of pressure sensors, assesses the gain of installing each set of sensors by means of the hypervolume indicator and determines the optimal number of sensors by the variation of the hypervolume indicator. The methodology was applied to a real case study. Several robustness analyses were carried out. The results demonstrate that the methodology is hardly influenced by the method parameters and that a reasonable estimation of the optimal number of sensors can be easily achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.