14 pagesInternational audienceReed instruments are modeled as self-sustained oscillators driven by the pressure inside the mouth of the musician. A set of nonlinear equations connects the control parameters (mouth pressure, lip force) to the system output, hereby considered as the mouthpiece pressure. Clarinets can then be studied as dynamical systems, their steady behavior being dictated uniquely by the values of the control parameters. Considering the resonator as a lossless straight cylinder is a dramatic yet common simplification that allows for simulations using nonlinear iterative maps. In this paper, we investigate analytically the effect of a time-varying blowing pressure on the behavior of this simplified clarinet model. When the control parameter varies, results from the so-called dynamic bifurcation theory are required to properly analyze the system. This study highlights the phenomenon of bifurcation delay and defines a new quantity, the dynamic oscillation threshold. A theoretical estimation of the dynamic oscillation threshold is proposed and compared with numerical simulations
Using an artificial mouth with an accurate pressure control, the onset of the pressure oscillations inside the mouthpiece of a simplified clarinet is studied experimentally. Two time profiles are used for the blowing pressure: in a first set of experiments the pressure is increased at constant rates, then decreased at the same rate. In a second set of experiments the pressure rises at a constant rate and is then kept constant for an arbitrary period of time. In both cases the experiments are repeated for different increase rates.Numerical simulations using a simplified clarinet model blown with a constantly increasing mouth pressure are compared to the oscillating pressure obtained inside the mouthpiece. Both show that the beginning of the oscillations appears at a higher pressure values than the theoretical static threshold pressure, a manifestation of bifurcation delay.Experiments performed using an interrupted increase in mouth pressure show that the beginning of the oscillation occurs close to the stop in the increase of the pressure. Experimental results also highlight that the speed of the onset transient of the sound is roughly the same, independently of the duration of the increase phase of the blowing pressure.
This paper presents an analysis of the effects of noise and precision on a simplified model of the clarinet driven by a variable control parameter.When the control parameter is varied the clarinet model undergoes a dynamic bifurcation. A consequence of this is the phenomenon of bifurcation delay: the bifurcation point is shifted from the static oscillation threshold to an higher value called dynamic oscillation threshold.In a previous work [8], the dynamic oscillation threshold is obtained analytically. In the present article, the sensitivity of the dynamic threshold on precision is analyzed as a stochastic variable introduced in the model. A new theoretical expression is given for the dynamic thresholds in presence of the stochastic variable, providing a fair prediction of the thresholds found in finite-precision simulations. These dynamic thresholds are found to depend on the increase rate and are independent on the initial value of the parameter, both in simulations and in theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.