Pilot studies revealed promising results regarding crushing virtual cigarettes to reduce tobacco addiction. In this study, 91 regular smokers were randomly assigned to two treatment conditions that differ only by the action performed in the virtual environment: crushing virtual cigarettes or grasping virtual balls. All participants also received minimal psychosocial support from nurses during each of 12 visits to the clinic. An affordable virtual reality system was used (eMagin HMD) with a virtual environment created by modifying a 3D game. Results revealed that crushing virtual cigarettes during 4 weekly sessions led to a statistically significant reduction in nicotine addiction (assessed with the Fagerström test), abstinence rate (confirmed with exhaled carbon monoxide), and drop-out rate from the 12-week psychosocial minimal-support treatment program. Increased retention in the program is discussed as a potential explanation for treatment success, and hypotheses are raised about self-efficacy, motivation, and learning.
Aryl hydrocarbon receptor (AhR) ligands are environmental contaminants found in cigarette smoke and other sources of air pollution. The prototypical compound is TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), also known as dioxin. There is an increasing body of knowledge linking cigarette smoking to osteoporosis and periodontal disease, but the direct effects of smokeassociated aryl hydrocarbons on bone are not well understood. Through the use of resveratrol (3,5,4 -trihydroxystilbene), a plant antifungal compound that we have recently demonstrated to be a pure AhR antagonist, we have investigated the effects of TCDD on osteogenesis. It was postulated that TCDD would inhibit osteogenesis in bone-forming cultures and that this inhibition would be antagonized by resveratrol. We employed the chicken periosteal osteogenesis (CPO) model, which has been shown to form bone in vitro in a pattern morphologically and biochemically similar to that seen in vivo, as well as a rat stromal cell bone nodule formation model. In the CPO model, alkaline phosphatase (AP) activity was reduced by up to 50% (P<0·01 vs control) in the presence of 10 9 M TCDD and these effects were reversed by 10 6 M resveratrol (P<0·05 vs TCDD alone). TCDD-mediated inhibition of osteogenesis was restricted primarily to the osteoblastic differentiation phase (days 0-2) as later addition did not appear to have any effects. Message levels for important bone-associated proteins (in the CPO model) such as collagen type I, osteopontin, bone sialoprotein and AP were inhibited by TCDD, an effect that was antagonized by resveratrol. Similar findings were obtained using the rat stromal bone cell line. TCDD (at concentrations as low as 10 10 M) caused an approximately 33% reduction in AP activity, which was abrogated by 3·5 10 7 M resveratrol. TCDD also induced a marked reduction in mineralization (75%) which was completely antagonized by resveratrol. These data suggest that AhR ligands inhibit osteogenesis probably through inhibition of osteodifferentiation and that this effect can be antagonized by resveratrol. Since high levels of AhR ligands are found in cigarette smoke, and further since smoking is an important risk factor in both osteoporosis and periodontal disease, it may be postulated that AhR ligands are the component of cigarette smoke linking smoking to osteoporosis and periodontal disease. If so, resveratrol could prove to be a promising preventive or therapeutic agent for smoking-related bone loss.
Bisphosphonates are widely utilized in the management of systemic metabolic bone disease due to their ability to inhibit bone resorption. Recently, new uses of this unique class of pharmacological agents have been suggested. Given their known affinity to bone and their ability to increase osteoblastic differentiation and inhibit osteoclast recruitment and activity, there exists a possible use for bisphosphonates in the diagnosis and management of periodontal diseases. These bone-specific properties could also provide an interesting management strategy to stimulate osteogenesis in conjunction with regenerative materials around osseous defects and may also result in the promotion of bone formation around endosseous implants. The objective of this article is to review the scientific evidence regarding the potential applications of bisphosphonate drugs in the therapeutic management of periodontal diseases. Moreover, the mechanism of action and the pharmacology of these drugs will be reviewed. Finally, the potential role of bisphosphonates regarding their potential to accelerate bone formation, in addition to their usual uses for inhibition of bone resorption, is discussed.
These experiments demonstrate that fs lasers used for bone tissue cutting do not appear to generate significant temperature transients to inactivate proteins and that cellular membrane integrity is disrupted for only a few cell layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.